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In the present article the first order linear differential operators with
unbounded coefficients are investigated. The boundedness of the operators under
consideration was proved.
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Let Qc R", n>2, be a bounded domain with smooth boundary 60 e C".

Consider the first order differential expression
Tu = (b(x), Vu(x)) = div(c(x)u(x)) + d(u(x), ueW; (),

with coefficients b(x) = (5" (x),...,6" (x)), c(x)=(c (x),....c™ (x)) and d(x) that
are measurable and bounded on each strong inner subdomain of the domain Q.

For an arbitrary u,ve W21 (Q) define

(Tu,v) = [ ((b(x), Vu(e)v(x) + (c(x)u(x), Vv(x) + d (Ru(x)v(x))dx
0

The aim of this article is to obtain conditions to be imposed on the
coefficients b(x),c(x) and d(x), for which T is a linear bounded operator acting

from W, (Q) into W, '(Q). This property has important applications in studying
the problems of mathematical physics (see, for example, [1, 2]).

The following theorem is proved.

Theorem. Let the following conditions hold

‘E(x)‘zO 1 as 1w >0, (1)
r(x)

where r(x) is the distance of a point x € O from the boundary 00,

[1C*(t)dt <o, where C(t)= sup c(x)|, )
0 r(x)=t

[ D*(t)dt <o, where D(t) = sup |d(x)|. (3)
0 r(x)=t
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Then the operator 7' is a bounded linear operator from VI;ZI(Q) into W;_I(Q) .
Proof of Theorem. Let x’e 0Q be an arbitrary point of the boundary 6Q of

the domain O, (x', x,) be a local coordinate system with the origin x° and the

x, axis directed along the inner normal v(x") to 80 at the point x°. Since, 60 € C",

there exists a positive number r, >0 and a function ¢ , € C '(R"™") with properties
?.(0)=0, Vg ,(0)=0 and ‘Vgoxo (x')‘ S% forall x'e R"",

such that the intersection of the domain ( with the ball Ui:‘O) ={x: ‘x - xo‘ <r,} of

radius 7, and the centre x" has the form QﬂU(;*") =Ui§‘°) N{(x"x,):x, >, (x)}.

. r

U(O"O) N{(x,x,):x, =@, (x")}. Let [, = From the covering
X x x \/5

(o)

Uy ,x" €00} of the boundary dQ select a finite subcovering Uif;”’) ,m=1,..,p.

Denote for simplicity Uiif”’) byU, ,r,byr,, l,byl,, ¢,.bye, m=1.,p.

Now set 4 = 2 ﬁ min(7,...,7, ) . Then each of the curvilinear “cylinders
3L 2 ?

H,f;”h ={(x"x,): |x'| <l,,p,(xV<x, <@, (x+h}, m=1,..,p,
as well as in U, NQ (recall that

(x',x,) are the coordinates of a point in a local system of coordinates with origin

Then 60 NU" =

xO

is contained in the corresponding ball U

m?o

at x™). Let [, <h be a positive number such that the complement of the domain
0, ={xeQ:r(x)=dist(x,00) >y} in Q is contained in the union of the cylin-

»
ders” H,;"”h, m=1,..,p, ie. o ={xeQ:r(x)=dist(x,00) <} = U H,i;"’h.
m=1

It is easily verified that for all x=(x"x,) e H,; oh ,m=L..,p,

r(x)<x, -, (x")< TSr(x) .

Now fix some number m, 1<m< p, and take a local coordinate system
with origin at x" .

We define mappings L and L, of the space R" onto itself using relations
L(x)=(x'x, = 9,(x")), where x=(x'x,) and L,(»)=0"y,+9,0"),
y=(»',y,). The image of H,l,;"’h under the mapping L will be denoted by I:I,l,;"’h :

(") =1

Now take arbitrary functions u € W, (Q) and 7€ C;(Q) and make the no-
tations u(y',y, +@(y) =u(y), n(y'y, +e(y)=71(y).
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In view of (1), (2) and (3) we have
|<Tu,77>| < Kj(—d X + j C(r(x))|u(x)||V 77(x)|dx + JD(r(x))|u(x)| |77(x)|dx ,
0

where K is a constant.
Let us estimate

Vu()|n(x) [Vuol|ne)
" éTd leo r(x) h Q{)|V”(")”’7(X>IdxS

o$ p el

2 7(x) +_||u||W2 ) "77"1/1/2 "
For m=1,...,p the following estimate holds:
1/2 1/2
V V. ~2
| u(x)||77(x)| I | u(y)||77(y)| \f { | |Vﬁ(y)|2 dy] [ i 7 (zy) y,J <
A i i Y

1/2 ~2 1/2
7" () . .
<\/_[ .[ |Vu(x)| dx} [J,y—zydy} SC()nSt||7"||W2‘(Q) ||77||W2‘(Q)'
I n

We used here the Hardy 1nequality (see, for example, [3]), in virtue of which

[ W fay | ay 050 ¢ ongy j Vi .
I1m" yn 0 [y <t yn i
Thus,
I < ConSt”””v%‘(Q) I ”@(Q) ’ @

where the constant does not depend on u and 77. Next,

I,= j Cr(x))|u()||V 7(x)|dx < j Cr())u()||V ()| dx + C(ly) [ [u(0)||V ()| dx <
9

p
< Zl [ CoQ)|u)||Vn(x)|dx +C(ZO)||u||W;21 - ||77||p;21 0
m=1[pim-h

For m=1,..., p we have

1/2
| C(r(x))|u(x)||V77(x)|de[ [ Cz(r(x))uz(x)de ||’7||V&;(Q)S

{ pe(Frlrom] Mias [Jd[ﬁxjn

1/2
dy,,cz[ yn]y,, Wl <
{J \/g ‘y‘<l 0 W, (Q)

1/2
<a{fe( G ] oo

1/2
it |
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Thus, we obtain
< ConSt”u”V;zl(Q) ||77||W21 0’ ®)
where the constant does not depend on u and 77 .
Similarly we obtain
I, = [ D)o de < [ D)oo dx+ D) [ [l dx <
Y ol

)
) 0
< Z .[ D(I’(x))|u(x)||77(x)|dx +D(10)”u”v;zl(g) ”77”»1;2‘@) :
m=1yhn
Finally, for m =1,..., p we have

] De@uopo)drs | hD(%ynjla(y)Hﬁ(ywy <

m

1/

2
2 5 ~2
< JDz(fyninuz(y)dy _/Iﬁny—(zy)dy <

= o
I,

1/2

1/2

2 Y 5
< const I D’ (ﬁynjﬁ ,([ |V“(y ', T)|2dfdy "77"@(@ <

=k
Hm

N 5 1/2 D G
< const('([D2 (f ¥, )yidynj ||u||W21 - ||77||W21(Q) .
Thus,
I < ConSt”u”n;; Q) ||77||VI;2'(Q) » (6)
where the constant is independent of « and 77.
Therefore, in view of (4)-(6) the following estimate holds

|<T u,77>|§c0nst||u|| where the constant is independent of u and 77.

) |7 "@(@ ’

Since the functions 77(x) from C; (Q) are dense everywhere in W21 (Q), the proof

of the Theorem immediately follows from the established estimate. The Theorem is
proved.
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9. d. Inudulyut

Unwght juipgh gduyht nhbptughuy owbpunnptph
ntwhdwiwhwlnipjut duuht

zZnpjudsnid  ntumdbwuhpynud B wnwghtt Yupgh whuwhdwbwthuy
gnpdujhgutipny qduwyhtt phdbpbkughwy owbpwwnpubp: Uwwugnigynd b wyy
oybkpuwwunpubph vwhdwbwhwlnipniup:
B. XK. dymans=

OO0 orpaHM4YeHHOCTH JIMHEHHBIX TU(QQEpeHIHANBHBIX OIIEpPaTOPOB EPBOTO MOPSIIKa

B HacTosielt paboTe uccienyrTes JUHeHHbIe AudQepeHIualbHbIe onepa-
TOpPHI TIEPBOTO TOPSAKA C HEOTPAaHHMUYEHHBIMU KOX(PQUIIMEHTaMU. Y CTaHOBIICHA
OTPaHUYEHHOCTHh PACCMATPUBAEMBIX OIIEPATOPOB.



