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Abstract—The well-known Paley inequalities for lacunary series are applied in investigation of
weighted spaces H(p, α) and H

(
p, log(α)

)
of functions holomorphic in the unit disc of the complex

plane. These are spaces which are similar to the Bloch and Hardy spaces and naturally arise as the
images of some fractional operators.
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1. We denote by D = {z ∈ C : |z| < 1} the unit disc, by T = ∂D the unit circle of the complex plane, by
H(D) the set of holomorphic functions in D. The integral mean of a measurable function f(z) = f(reiθ)
we denote as

Mp(f ; r) =
∥∥f(r·)∥∥

Lp(T;dm)
, 0 ≤ r < 1, 0 < p ≤ ∞,

where dm stands for the normed Lebesgue measure on T. Note that the set of holomorphic functions
f(z) that satisfy ‖f‖Hp = sup

0<r<1
Mp(f ; r) < ∞, is the ordinary Hardy space Hp.

By H(p, α) (0 < p ≤ ∞, α > 0) we denote the space of all functions f(z) holomorphic in D, which
have finite quasinorms

‖f‖p,α = sup
0<r<1

(1− r)αMp(f ; r)

and note that the norm |f(0)|+ ‖∇f‖∞,1 coincides with that of Bloch spaces B, see [1], [2] for the basic
theory.

By H0(p, α) (0 < p ≤ ∞, α > 0) we denote the space of those functions f(z) holomorphic in the disc
D, for which

(1− r)αMp(f ; r) = o(1) as r → 1− .

Note that if (1− r)M∞(∇f ; r) = o(1), then f is said to belong to the little Bloch space B0. In addition,
we define H

(
p, log(α)

) (
0 < p ≤ ∞, α > 0

)
to be the class of those functions f(z) holomorphic inD, for

which

‖f‖p,log(α) = sup
0<r<1

(
log

e

1− r

)−α

Mp(f ; r) < +∞.

2. The positive constants we are going to denote C(α, β, . . . ), Cα etc, displaying the dependence on
parameters. Besides, dm2 will stand for the Lebesgue measure overD and for any A,B > 0 the notation
A ≈ B will mean the existence of the two-sided estimate c1A ≤ B ≤ c2A with some non-essential
positive constants c1 and c2, not depending on the variable.
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For any function representable by the series f(z) =
∞∑

n=0
anrneinθ, Hadamard’s fractional integrodif-

ferentiation operator Fα of the order α ∈ R is defined:

Fαf(z) =
∞∑

n=0

(1 + n)αanrneinθ.

An evident inversion formula FαF−αf(z) = f(z), α ∈ R is valid.
A sequence {nk}∞k=1 ⊂ N is called lacunary or Hadamard, if there exists a number λ > 1 such that

nk+1/nk ≥ λ for all k = 1, 2, . . . In addition, the corresponding power series is called lacunary, and the
following well-known theorem is true (see [3], Chapter 5, Theorem 8.20).

Theorem 1. (Paley [3]) Let
{
nk

}∞
k=1

be a lacunary sequence and f be a holomorphic function
representable in D by the convergent lacunary series f(z) =

∑∞
k=1 akz

nk .

Then for any p, 0 < p < ∞, the function f is of the Hardy space Hp if and only if {ak} ∈ `2, and
the corresponding norms are equivalent: ‖f‖Hp ≈ ‖{ak}‖`2 .

3. While the above Theorem 1 characterizes lacunary series in the Hardy space Hp, the next theorem,
which we prove, relates to a similar characterization in the weighted spaces H(p, α).

Theorem 2. Let α > 0 be arbitrary, let
{
nk

}∞
k=1

be a lacunary sequence and let a function f

be representable by the convergent lacunary series f(z) =
∑∞

k=1 akn
α
k znk . Then the following

conditions are equivalent:

(i) f(z) ∈ H(∞, α),

(ii) f(z) ∈ H(p, α) for some p, 0 < p < ∞,

(iii) f(z) ∈ H(p, α) for all p, 0 < p < ∞,

(iv) {ak}∞k=1 ∈ `∞,

and the corresponding norms are equivalent.

Proof: The implication (i) ⇒ (ii) is obvious by the embedding H(∞, α) ⊂ H(p, α). Also, the implica-
tion (ii) ⇒ (iii) is obvious by Theorem 1, according to which Mp(f ; r) ≈ Mq(f ; r) for any q, 0 < q < ∞.

To prove the implication (iii) ⇒ (iv), assume that f(z) ∈ H(p, α) for any p, 0 < p < ∞, and partic-
ularly (1− r)αM1(f ; r) ≤ ‖f‖1,α. Then by the Cauchy integral formula

|ak|nα
k =

∣∣∣∣∣
1

2πi

∫

|ζ|=r

f(ζ) dζ

ζ1+nk

∣∣∣∣∣ ≤
1

rnk
M1(f ; r) ≤ ‖f‖1,α

(1− r)α rnk

for any 0 < r < 1 and k = 1, 2, . . . Hence, taking r = 1− 1/nk we get

|ak| ≤ ‖f‖1,α

(
1− 1

nk

)−nk

≤ 4‖f‖1,α,

i.e. {ak} ∈ `∞. To prove the implication (iv) ⇒ (i), assume that

|ak| ≤ M ≤ ∥∥{ak}
∥∥

`∞ for all k = 1, 2, . . .

Then we apply Hadamard’s operator to the function f(z)

F1−αf(z) =
∞∑

k=1

(1 + nk)1−αakn
α
k znk ,
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and estimate

∣∣F1−αf(z)
∣∣ ≤ CαM

∞∑

k=1

nk rnk .

One can see that

nk+1 ≤ λ

λ− 1
(nk+1 − nk), k = 1, 2, . . . ,

hence

nk+1r
nk+1 ≤ C(λ)

[
r1+nk + r2+nk + · · ·+ rnk+1

]
.

Therefore,

∣∣F1−αf(z)
∣∣ ≤ C(α, λ) M

∞∑

k=1

rk ≤ C(α, λ)
∥∥{ak}

∥∥
`∞

r

1− r
.

By the inclusion F1−αf ∈ H(∞, 1) and invertibility of Hadamard’s operator

f(z) = Fα−1F1−αf(z) ∈ H(∞, 1 + (α− 1)) = H(∞, α),

where the corresponding norms are equivalent. This completes the proof.

Note that replacing f(z) by f ′(z) and taking α = 1 in Theorem 2 we come to the characterization of
the Bloch space B given in [1], [2], [4]. Also, an “little oh" version of Theorem 2, giving a characterization
of the little Bloch space B0, is true. The proof of this version is similar to that of Theorem 2, and the
statement is obtained by replacing H(p, α) by H0(p, α) and the condition {ak} ∈ `∞ by lim

k→∞
ak = 0 in

Theorem 2.

4. The next theorem gives some sharp estimates for Hadamard’s integrodifferential operator in the
spaces H(p, α) and H

(
p, log(α)

)
.

Theorem 3. If u(z) ∈ H(D) and α > 0, then

‖F−αu‖p,log(1/p) ≤ C‖u‖p,α, 0 < p ≤ 2, (1)

‖F−αu‖p,log(1/2) ≤ C‖u‖p,α, 2 ≤ p < ∞, (2)

‖F−αu‖∞,1/p ≤ C‖u‖p,α, 0 < p < ∞, (3)

‖F−αu‖∞,log(1) ≤ C‖u‖∞,α, (4)

‖F−αu‖p,log(1/2) ≤ C‖u‖∞,α, 0 < p < ∞. (5)

The estimates (1)-(5) are the best possible in the sense that for each estimate ‖F−αu‖Y ≤
C‖u‖X there exists a function f0(z) for which ‖F−αf0‖Y ≈ ‖f0‖X .

Proof: For u(z) ∈ H(D) we use Flett’s inequalities [5], [6]

‖F−αu‖Hp ≤ C

(∫

D
(1− |z|)αp−1|u(z)|pdm2(z)

)1/p

, α > 0, 0 < p ≤ 2, (6)

‖F−αu‖Hp ≤ C

(∫ 1

0
(1− r)2α−1M2

p (u; r)dr

)1/2

, α > 0, 2 ≤ p < ∞. (7)

Applying (6) to the dilated function uρ(z) = u(ρz) we get

Mp(F−αu; ρ) ≤ C

(∫

D
(1− |z|)αp−1|u(ρz)|pdm2(z)

)1/p

, ρ ∈ (0, 1).
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Hence

Mp
p (F−αu; ρ) ≤ C

∫ 1

0
(1− r)αp−1Mp

p (u; ρr)dr ≤

≤ C‖u‖p
p,α

∫ 1

0

(1− r)αp−1

(1− ρr)αp
dr ≤ C‖u‖p

p,α log
1

1− ρ
.

This inequality is the best possible in view of the example f1(z) = (1− z)−α−1/p. In fact one can easily
verify that

(1− r)αMp(f1; r) ≈ 1 and Mp(F−αf1; r) ≈
(

log
e

1− r

)1/p

.

Thus, the inequality (1) is proved. Further, by (7) and Fatou’s lemma

M2
p (F−αu; ρ) ≤ C

∫ 1

0
(1− r)2α−1M2

p (u; ρr)dr ≤

≤ C‖u‖2
p,α

∫ 1

0

(1− r)2α−1

(1− ρr)2α
dr ≤ C‖u‖2

p,α log
e

1− ρ
,

for any ρ ∈ (0, 1), and this estimate is the best in view of the example f2(z) =
∑∞

k=0 2αk z2k
. Indeed, by

Theorem 1

Mp(f2; r) ≈
( ∞∑

k=0

22αk r2k+1

)1/2

≈ r

(1− r)α
, r ∈ (0, 1).

On the other hand,

F−αf2(z) =
1

Γ(α)

∞∑

k=0

2αk

(∫ 1

0
(1− η)α−1η2k

dη

)
z2k

,

and M2
p (F−αf2; r) ≈ log e

1−r . This completes the proof of the inequality (2).
Now let u(z) ∈ H(p, α) be arbitrary. Then by the continuous embedding H(p, α) ⊂ H(∞, α + 1/p)

(see [6] or [7]) and the relation F−α
(
H(∞, α + 1/p)

)
= H(∞, 1/p) (see [6]) we get the estimate

‖F−au‖∞,1/p ≤ C‖u‖∞,α+1/p ≤ C‖u‖p,α.

It is sharp due to the example f1(z) = (1− z)−α−1/p, and the proof of (3) is complete.
Assume now that u(z) ∈ H(∞, α). Then

M∞(F−αu; r) ≤ 1
Γ(α)

∫ 1

0
(1− η)α−1M∞(u; ηr)dη ≤

≤ 1
Γ(α)

‖u‖∞,α

∫ 1

0

(1− η)α−1

(1− ηr)α
dη ≤ Cα‖u‖∞,α log

e

1− r
.

The sharpness of this inequality is proved by the example f3(z) = (1− z)−α, so the inequality (4) is
proved.

It remains to see that by (2) and the monotone increasing property of Mp in p

‖F−au‖p,log(1/2) ≤ ‖F−au‖max{2,p},log(1/2) ≤ C‖u‖max{2,p},α ≤ C‖u‖∞,α.

This is a sharp estimate due to the example f2(z) =
∑∞

k=0 2αkz2k
, since

M∞(f2; r) ≤
∞∑

k=0

2αk r2k ≈ r

(1− r)α
, r ∈ (0, 1),
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while M2
p (F−αf2; r) ≈ log

e

1− r
. Thus, (5) is established and the proof is complete.

Remarks. For the particular case α = 1, most of the statements Theorem 3 can be found in [1], [4], [8] –
[10]. The proof of the inequality (5) for α = 1 found in [9] (p. 364) and [10] (p. 374) are considerably more
complicated than those of Theorem 3. In [4] (p. 467) the inequality (3) is proved for α = 1, 1/2 ≤ p < ∞.
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