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Abstract. We consider sequences of compact bounded linear op-
erators Un : Lp(0, 1) → Lp(0, 1) with certain convergence prop-
erties. Several divergence theorems for the multiple sequences of
tensor products of these operators are proved. These theorems in
particular imply that L logd−1 L is the optimal Orlicz space guaran-
teeing almost everywhere summability of rectangular partial sums
of multiple Fourier series in general orthogonal systems.

1. Introduction

It is well known that (C, 1) means of the rectangular partial sums of
d-dimensional Fourier series of the functions from the class L logd−1 L(Td)
converge almost everywhere and it is the optimal Orlicz space with this
property ([20], ch.17). The arguments of [20] imply also the optimality
of the same class for the convergence of (C, α)-means with α > 0. Such
properties of Fourier series are based on two fundamental theorems in
the theory of differentiation of integrals: if f ∈ L logd−1 L(Rd), then

(1.1) lim
diam (R)→0,x∈R

1

|R|

∫
R

f = f(x) a.e.,

where R denotes d-dimensional interval with the diameter diam (R)
(Jessen-Marcinkiewicz-Zygmund [9]) and conversely, in each Orlicz space
larger than L logd−1 L(Rd) there exists a function f(x) such that (1.1)
fails for any x ∈ Rd (Saks [17]).

For two positive quantities a and b the relation a . b (or a & b)
stands for a ≤ c · b (or a ≥ c · b), where c > 0 is either an absolute
constant or a constant depended on the dimension d. The notation IE
denotes the indicator function of a set E. Let Kα

n (x) be the kernel of
(C, α)-means of the one dimensional Fourier series. It is well known
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the estimate

(1.2) nI(−1/n,1/n)(x) . Kα
n (x) .

m(n)∑
i=1

αiI(−xi,xi)(x),

where the numbers αi > 0, 0 < x1 < . . . < xm(n) ≤ π depend on n and
satisfy the inequality

m(n)∑
i=1

xiαi ≤ 1

(see [2], chap. 1, Theorem 4.2, and [20], chap. 17, Theorem 2.14).
The kernel of the (C, α)-means of the rectangular partial sums of d-
dimensional Fourier series has the form

Kα
n (x) = Kα

n1
(x1)Kα

n2
(x2) . . . Kα

nd
(xd),

where n = (n1, n2, . . . , nd) and x = (x1, x2, . . . , xd) ∈ Td. So for the
(C, α)-means we have the formula

(1.3) σαn(x, f) =
1

πd

∫ π

−π
. . .

∫ π

−π
f(x− t)Kα

n (t)dt1 . . . dtd.

The relation (1.2) is the basic argument which makes possible to use
the integral differentiation theory in the summability problems of the
multiple Fourier series. More precisely, using (1.2), one can get the
estimate

(1.4) Mf(x) . sup
n∈Nd
|σαn(x, f)| .Mf(x)

where Mf(x) is the ordinary strong maximal function. The right in-
equality in (1.4) holds for arbitrary f ∈ L1 while the left one for the pos-
itive functions. Then the optimality of the class L logd−1 L(Td) for a.e.
convergence of σαn(x, f) can be obtained from the theorems of Jessen-
Marcinkiewicz-Zygmund and Saks by using standard arguments.

The right inequality in (1.2) is common for many kernels of sum-
mation, while the left one fails for some of them. An example of such
method of summation are the well known logarithmic means

1

ln

n−1∑
k=1

Sk(f)

k
, ln =

n−1∑
k=1

1

k
,

where Sk(f) denotes the partial sum of the Fourier series of a function
f ∈ L1(T). It is known that the convergence of Cesàro means of a
sequence implies the convergence of the logarithmic means ([19], chap.
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3.9) and the kernel Kn(x) of the logarithmic means of Fourier series
has the estimate

0 ≤ Kn(x) . min

{
1

x log n
,
n

log n

}
, 0 < |x| < π.

One can observe that it satisfies the right inequality of (1.2) and the left
estimate is not satisfied. Thus d-dimensional logarithmic means of the
functions from L logd−1 L converge almost everywhere. The question
of the optimality of L logd−1 L for this convergence property was open.
The main result of this paper solves this question positively. More-
over, we establish general divergence theorems for some sequences of
compact bounded operators in L1(0, 1)d. These theorems imply that
there is no summation method giving a larger a.e. convergence class
than L logd−1 L for the rectangular partial sums of the multiple Fourier
series in general orthogonal systems.

Let Qd = (0, 1)d be the unit d-dimensional cube. For a given increas-
ing continuous function

(1.5) Φ(t) : [0,∞)→ [0,∞)

we denote by Φ(L)(Qd) the class of functions f(x) defined on Qd sat-
isfying the inequality ∫

Qd

Φ (|f(x)|) dx <∞.

If

(1.6) U : L1(0, 1)→ L1(0, 1)

is a bounded linear operator, then we denote by (U)k operators

(U)k : L1(Qd)→ L1(Qd), 1 ≤ k ≤ d,

defined by

(1.7) (U)kf(x1, . . . , xd) = Uf(x1, . . . , xk−1, ·, xk+1, . . . , xd).

In the right side of (1.7) f(x1, . . . , xk−1, ·, xk+1, . . . , xd) is considered as
a function in the variable xk (the other variables are fixed). Obviously
(1.7) is defined for almost all x = (x1, . . . , xd) and each (U)k is a
bounded linear operator on L1(Qd). For a given sequence of bounded
linear operators

(1.8) Un : L1(0, 1)→ L1(0, 1), n = 1, 2, . . . ,

we define the multiple sequence of operators

(1.9) Un = (Un1)1 ◦ (Un2)2 ◦ . . . ◦ (Und)d, n = (n1, n2, . . . , nd),

in L1(Qd) generated from the tensor products of (1.8).
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We will consider operator sequences Un with the properties
(A) each Un is a compact linear operator,
(B) if f ∈ L∞(0, 1), then Unf(x) converges to f(x) in measure.

Recall that if U is a compact linear operator on L1(0, 1), then for
any sequence of functions gn ∈ L1(0, 1), n = 1, 2, . . ., satisfying the
condition

lim
n→∞

∫ 1

0

f(x)gn(x)dx = 0

for any f ∈ L∞(0, 1), we have ‖U(gn)‖1 → 0 as n→∞.
One of the main results of this paper is the following

Theorem 1. Let Un be a sequence of bounded linear operators (1.8)
with the properties (A) and (B). Then for any function (1.5) satisfying

(1.10) lim
t→∞

Φ(t)

t logd−1 t
= 0

there exists a function g ∈ Φ(L)(Qd), g(x) ≥ 0, such that

lim sup
min{nk}→∞

|Ung(x)| =∞

at almost every point x ∈ Qd.

Let ϕ = {ϕn(x)}∞n=1 ⊂ L∞(0, 1) be an orthonormal system. Denote
by Snf(x) the partial sums of the Fourier series of a function f ∈
L1(0, 1) in this system. Suppose the matrix A = {ank, 1 ≤ k ≤ n, n =
1, 2, . . .} determines a regular method of summation, that is

lim
n→∞

ank = 0,

sup
n∈N

n∑
k=1

|ank| <∞,

lim
n→∞

n∑
k=1

ank = 1.

The sequence of operators

(1.11) σϕ,An f(x) =
n∑
k=1

ankSkf(x)

defines A-means of the partial sums of Fourier series of a function
f ∈ L1(0, 1) with respect to the orthonormal system ϕ. The tensor
products of the operators (1.11) defined by

σϕ,An = (σϕ,An1
)1 ◦ (σϕ,An2

)2 ◦ . . . ◦ (σϕ,And )d
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generate A-means of multiple Fourier series with respect to system ϕ.
Observe that the sequence (1.11) satisfies the conditions (A) and (B).
So the following theorem is an immediate consequence of Theorem 1.

Theorem 2. Let A = {ank, 1 ≤ k ≤ n, n = 1, 2, . . .} be a regu-
lar method of summation and {ϕn(x)}∞n=1 ⊂ L∞(0, 1) be a complete
orthonormal system. Then under the condition (1.10) there exists a
function f ∈ Φ(L)(Qd), whose Fourier series in the system {ϕn(x)} is
almost everywhere A-divergent, i.e.

lim sup
min{nk}→∞

∣∣σϕ,An f(x)
∣∣ =∞ a.e..

Particular cases of this theorem for double Fourier series were con-
sidered in the papers [10] and [5].

Theorem A (Karagulyan, 1989). If {ϕn(x)}∞n=1 ⊂ L∞(0, 1) is a com-
plete orthonormal system and Φ satisfies the condition (1.10), then
there exists a function f ∈ Φ(L)(0, 1)2 with double Fourier series

(1.12)
∞∑
n=1

∞∑
m=1

anmϕn(x)ϕm(y)

satisfying the relation

(1.13) lim sup
min{N,M}→∞

∣∣∣∣∣
N∑
n=1

M∑
m=1

anmϕn(x)ϕm(y)

∣∣∣∣∣ =∞

almost everywhere on (0, 1)2.

Theorem B (Getsadze, 2007). Let {ϕn(x)}∞n=1 ⊂ L∞(0, 1) be a com-
plete orthonormal system and Φ satisfies the condition (1.10). Then
for any Lebesgue measurable set E ⊂ (0, 1)2 with mE > 0 there exists
a function f ∈ Φ(L)(0, 1)2 and a set E ′ ⊂ E, mE ′ > 0, such that
the sequence of rectangular (C, 1) means of double Fourier series are
unbounded on E ′.

Analogous problems for Walsh systems were considered before by
G. Gàt [3], K. Nagy [14], F. Mor̀icz, F. Schipp and W. R. Wade [13]. It
is proved that L logL(0, 1)2 is the maximal Orlicz space for a.e.(C, 1)
summability of double Fourier series in Walsh-Paley ([3]) and Walsh-
Kaczmarz ([14]) systems.

In the the proofs of the theorems of the present paper we essentially
use the method of Haar type systems. This method was first used
by Olevskii [15, 16] in his work on divergence problems of orthogonal
series.
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2. Haar type systems

Recall the definition of Haar type systems ([12], ch. 3.1). We say a
family of sets ε = {En : n = 1, 2, . . .} is a dyadic partition of [0, 1) if

(2.1) E1 = [0, 1), En = Ei
k ⊂ [0, 1), i = 1, 2, . . . , 2k, k = 0, 1, . . . ,

where n ≥ 2 has the representation

(2.2) n = 2k + i, 1 ≤ i ≤ 2k, k = 0, 1, 2 . . . ,

and we have

(2.3)

m(Ei
k) = 2−k, 1 ≤ i ≤ 2k,

Ei
k = E2i−1

k+1 ∪ E
2i
k+1,

Ei
k ∩ E

j
k = ∅ if i 6= j.

Any dyadic partition uniquely defines a Haar type system ξ = {ξn(x), n =
1, 2, . . .} on [0, 1) as follows:

ξ1(x) ≡ 1,

ξn(x) =

 2k/2 if x ∈ E2i−1
k+1 ,

−2k/2 if x ∈ E2i
k+1,

0 if x 6∈ Ei
k.

If
En = ∆n =

[
i− 1

2k
,
i

2k

)
, i = 1, 2, . . . , 2k, k = 0, 1, . . . ,

then we get the ordinary Haar system, which will be denoted by χ =
{χn(x)}. It is known (see [12], ch. 3.9) that for any Haar type system
ξn(x) there exists a measure preserving transformation u(x) : [0, 1) →
[0, 1) such that

(2.4) ξn(x) = χn(u(x)) a.e. .

Consequences of this is the basic property will be used in different
situations below.

Examples of dyadic partitions of [0, 1) may be given using the Rademacher
system

rn(x) = (−1)[2nx], x ∈ [0, 1), n = 1, 2, . . . .

For a given integer n ≥ 2 of the form (2.2), we define

n̄ = 2k−1 +

[
i+ 1

2

]
.

Take an arbitrary sequence of integers 1 ≤ p2 < p3 < . . . < pn . . .. The
following recurrence formula

(2.5) E1 = E2 = [0, 1), En =
{
x ∈ En̄ : (−1)n+1rpn̄(x) > 0

}
, n > 2,
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defines a partition of [0, 1). This family of sets uniquely determines a
Haar type system as follow:

(2.6) ξn(x) =
rpn(x)IEn(x)√

|En|
, n ≥ 2.

We consider the tensor products of the Haar and Haar type systems

χn(x) = χn1(x1) . . . χnd(xn),

ξn(x) = ξn1(x1) . . . ξnd(xn),

where x = (x1, . . . , xd) ∈ Qd, n = (n1, . . . , nd) ∈ Nd. For a given
function f(x) ∈ L1(Qd) let

(2.7) an =

∫
Qd

f(x)χn(x)dx, n = (n1, n2, . . . , nd),

be the Fourier-Haar coefficients of f . We denote

(2.8) Sξf(x) =
∞∑

k=1

akξk(x) =
∞∑
k1=1

. . .
∞∑
k1=1

ak1...kdξk1(x1) . . . ξkd(xd).

This series is said to be convergence (a.e., in Lp norm) if its rectangular
partial sums

Sξnf(x) =
n∑

k=1

akξn(x) =

n1∑
k1=1

. . .

nd∑
k1=1

ak1...kdξk1(x1) . . . ξkd(xd)

converges as min{ni} → ∞. It is well known that the series (2.8)
converges in L1 norm. Besides, we have Sξf(x) = f(x) whenever ξ
coincides with the ordinary Haar system. If ξ coincides with the Haar
system, then instead of Sξn the notation Sn will be used. In the one
dimensional case (d = 1) the operators Sξ, Sξn and Sn will be denoted
by Sξ, Sξn and Sn respectively. Observe that

Sξ = ⊗dk=1

(
Sξ
)
k

=
(
Sξ
)

1
◦ . . . ◦

(
Sξ
)
d
,(2.9)

Sξn = ⊗dk=1

(
Sξnk
)
k

=
(
Sξn1

)
1
◦ . . . ◦

(
Sξnd
)
d
.(2.10)

Recall the strong maximal function is defined by

Mf(x) = sup
R: x∈R

1

|R|

∫
R

f(t)dt,

where sup is taken over all d-dimensional intervals R = (a1, b1)× . . .×
(ad, bd) ⊂ Qd containing the point x ∈ Qd. It is well known that

sup
n

∣∣∣∣∣
n∑

k=1

akχk(x)

∣∣∣∣∣ ≤Mf(x)
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for any f ∈ L1(Qd) with the Fourier-Haar coefficients (2.7). Thus,
using the weak type inequality
(2.11)

m {x ∈ Qd : Mf(x) > λ} ≤ cd

∫
Qd

|f |
λ

logd−1

(
1 +
|f |
λ

)
, λ > 0,

(Fava [1] or Guzman [6], ch. 2.3) and the relation (2.4), we conclude

(2.12)

m

{
x ∈ Qd : sup

n

∣∣∣∣∣
n∑

k=1

akξk(x)

∣∣∣∣∣ > λ

}

= m

{
x ∈ Qd : sup

n

∣∣∣∣∣
n∑

k=1

akχk(x)

∣∣∣∣∣ > λ

}

≤ cd

∫
Qd

|f |
λ

logd−1

(
1 +
|f |
λ

)
, λ ≥ 0,

where the equality in (2.12) follows from the definition of Haar type
system.

3. Almost everywhere convergence classes of functions

The following theorem is the main result of this section.

Theorem 3. If a sequence of bounded linear operators Un : L1(0, 1)→
L1(0, 1) satisfies the conditions (A), (B) and Un is the multiple sequence
of operators (1.7) generated by Un, then there exist a Haar type system
ξ = {ξn(x)} and a sequence of integers 0 < ν(1) < ν(2) < . . . < ν(k) <
. . . such that for any function

f ∈
{
L logd−2(Qd) if d ≥ 2,

L1(0, 1) if d = 1,

we have

(3.1) lim
min{nk}→∞

((
Uν(n) ◦ Sξ

)
f(x)− Sξnf(x)

)
= 0

at almost every x ∈ Qd.

An analogous theorem for martingale operator sequences was proved
in the paper [11]. That is, if Un is an arbitrary sequence of martingale
operators, then there exists a sequence of sets Gn ⊂ Qd with m(Gn)→
1 as min{ni} → ∞ such that the relation(

Uν(n) ◦ Sξ
)
f(x) = Sξnf(x), x ∈ Gn, n ∈ Nd,

holds for any f ∈ L1(Qd). Some problems related to this martingale
theorem were considered before in the papers by K. Hare, A. Stokolos
[8], P. Hagelstein [7] and A. Stokolos [18].
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Lemma 1. If εni > 0, n, i = 1, 2, . . ., then for any sequence of bounded
linear operators (1.8) satisfying (A) and (B), there exist a sequence of
integers 0 < ν(1) < ν(2) < . . . < ν(k) < . . . and a Haar type system
ξ = {ξn(x)} such that

m
{
x ∈ (0, 1) : |Uν(n)ξi(x)− ξi(x)| > εni

}
< εni, 1 ≤ i ≤ n,(3.2)

m
{
x ∈ (0, 1) : |Uν(n)ξi(x)| > εni

}
< εni, i > n.(3.3)

Proof. We use induction. The system ξ will be found in the form
(2.6). Define ξ1(x) ≡ 1 and p1 = 1. Using the property (B) we have
Uνξ1(x)→ ξ1(x) in measure as ν →∞, and so we may take a number
ν(1) satisfying (3.2) for n = 1. Then suppose we have already chosen
the numbers ν(1) < ν(2) < . . . < ν(k− 1) and the first k− 1 functions
of the system ξ satisfying the relations (2.6), (3.2) and (3.3) for n, i =
1, 2, . . . k − 1. We define the set Ek satisfying (2.5), i.e.

Ek =
{
x ∈ Ek̄ : (−1)k+1rpk̄(x) > 0

}
.

Using the compactness of the operators Uν(n), n = 1, 2, . . . , k − 1, we
have

lim
m→∞

∥∥Uν(n)

(
rm(x)IEk(x)

)∥∥
1

= 0, n = 1, 2, . . . , k − 1.

Thus we can choose a number m = pk > pk−1 such that∥∥∥∥∥Uν(n)

(
rpk(x)IEk(x)√

|Ek|

)∥∥∥∥∥
1

< (εki)
2, n = 1, 2, . . . , k − 1.

Defining ξk =
rpk IEk√
|Ek|

and using Chebyshev’s inequality, we get

(3.4) m
{
x ∈ (0, 1) : Uν(n)ξk(x)

)
> εki

}
< εki, n = 1, 2, . . . , k − 1.

Then, using the convergence in measure Uνξi(x) → ξi(x) as ν → ∞,
for i = 1, 2, . . . , k, we may chose ν(k) > ν(k − 1) such that

(3.5) m
{
x ∈ (0, 1) : |Uν(k)ξi(x)− ξi(x)| > εki

}
< εki, 1 ≤ i ≤ k.

Combining (3.4) and (3.5) we get (3.2) and (3.3) for n, i = 1, 2, . . . , k.
This completes by induction the proof of lemma. �

Let the function f ∈ L logd−1 L(Qd) have Fourier-Haar coefficients
ak defined by (2.7). Suppose 1 ≤ s < d and denote

(3.6) δk1,...,ks(xs+1, . . . , xd)

= sup
ns+1≥1,...,nd≥1

∣∣∣∣∣∣
ns+1∑
ks+1=1

. . .

nd∑
kd=1

ak

d∏
i=s+1

ξki(xi)

∣∣∣∣∣∣ .
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Lemma 2. If f ∈ L logd−s−1(Qd), 1 ≤ s < d, then

(3.7) m {(x1, . . . , xd) ∈ Qd : δk1,...,ks(xs+1, . . . , xd) > λ}

≤ cd (k1 . . . ks)
d

∫
Qd

|f |
λ

logd−s−1

(
1 +
|f |
λ

)
,

for any λ ≥ 1.

Proof. Observe that, if the integers k1, . . . , ks are fixed, then the mul-
tiple series

∞∑
ks+1=1

. . .

∞∑
kd=1

ak

d∏
i=s+1

χki(xi)

is the Fourier-Haar series of the function

g(xs+1, . . . , xd) = gk1,...,ks(xs+1, . . . , xd)

=

∫
Qs

f(t1, . . . , ts, xs+1, . . . , xd)
s∏
i=1

χki(ti)dt1 . . . dts.

Thus, using the notation (3.6) and the inequality (2.12) in the (d− s)-
dimensional case, we obtain

(3.8) m {(xs+1, . . . , xd) ∈ Qd−s : δk1,...,ks(xs+1, . . . , xd) > λ}

≤ cd−s

∫
Qd−s

Φ

(
|g(xs+1, . . . , xd)|

λ

)
dxs+1, . . . , dxd,

where Φ(t) = t logd−s−1(1 + t) and λ > 1. Since |χn(x)| ≤
√
n, we get

(3.9) |g(xs+1, . . . , xd)|

≤
s∏
i=1

√
ki

∫
Qs

|f(t1, . . . , ts, xs+1, . . . , xd)|dt1 . . . dts.

It is easy to check that Φ(t) is a convex function and

Φ(kx) ≤ ks+1Φ(x), x > 0, k ≥ 1.

Thus, using (3.9) and Jensen’s inequality, we obtain

Φ

(
|g(xs+1, . . . , xd)|

λ

)
≤ (k1 . . . ks)

s+1
2 Φ

(∫
Qs

|f(t1, . . . , ts, xs+1, . . . , xd)|
λ

dt1 . . . dts

)
≤ (k1 . . . ks)

s+1
2

∫
Qs

Φ

(
|f(t1, . . . , ts, xs+1, . . . , xd)|

λ

)
dt1 . . . dts.
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Integration with respect to variables xs+1, . . . , xd implies∫
Qd−s

Φ

(
|g(xs+1, . . . , xd)|

λ

)
dxs+1, . . . , dxd

≤ (k1 . . . ks)
d

∫
Qd

Φ

(
|f(t1, . . . , td)|

λ

)
dt1 . . . dtd.

Combining this inequality with (3.8), we get

m{(x1, . . ., xd) ∈ Qd : δk1,...,ks(xs+1, . . . , xd) > λ}
= m {(xs+1, . . . , xd) ∈ Qd−s : δk1,...,ks(xs+1, . . . , xd) > λ}

≤ cd

(
s∏
i=1

ki

)d ∫
Qd

Φ

(
|f(t1, . . . , td)|

λ

)
dt1 . . . dtd.

�

Proof of Theorem 3. Applying Lemma 1, we fix a Haar type system
{ξn(x)} and a sequence ν(n) satisfying the conditions (3.2), (3.3) with

(3.10) εnk = 4−n−k.

Then we denote

(3.11) α
(n)
k (x) =

{
Uν(n)ξk(x)− ξk(x), if 1 ≤ k ≤ n,
Uν(n)ξk(x), if k > n.

The boundedness of the operators Un and the L1-convergence of the
series (2.8) imply

(3.12)
(
Uν(n) ◦ Sξ

)
f(x) =

∞∑
k=1

akUν(n1)ξk1(x1) . . . Uν(nd)ξkd(xd).

Substituting

Uν(ni)ξki(xi) =

{
α

(ni)
ki

(xi), if ki > ni,

ξki(xi) + α
(ni)
ki

(xi), if 1 ≤ ki ≤ ni,

in (3.12), we may easily observe that(
Uν(n) ◦ Sξ

)
f(x) =

∑
I⊂{1,...,d}

∑
k: 1≤ki≤ni, i∈Ic

ak

∏
i∈I

α
(ni)
ki

(xi)
∏
i∈Ic

ξki(xi),
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where the first sum is taken over all the subsets I of the set {1, . . . , d}.
If I = ∅, then we have∑

1≤ki≤ni, i∈Ic
ak

∏
i∈I

α
(ni)
ki

(xi)
∏
i∈Ic

ξki(xi)

=
n∑

k=1

ak

d∏
i=1

ξki(xi) =
n∑

k=1

akξk(x) =
(
Sξ ◦ Sn

)
f(x).

Thus we get

(3.13)

(
Uν(n) ◦ Sξ

)
f(x)−

(
Sξ ◦ Sn

)
f(x)

=
∑
I 6=∅

∑
k: 1≤ki≤ni, i∈Ic

ak

∏
i∈I

α
(ni)
ki

(xi)
∏
i∈Ic

ξki(xi).

Hence, in order to prove the theorem, it is enough to show

(3.14) lim
min{ni}→∞

∑
k: 1≤ki≤ni, i∈Ic

ak

∏
i∈I

α
(ni)
ki

(xi)
∏
i∈Ic

ξki(xi) = 0 a.e.

whenever I 6= ∅. Without loss of generality we may suppose that
I = {1, . . . , s}, 1 ≤ s ≤ d. So we must prove

(3.15) lim
min{ni}→∞

∑
k: 1≤ki≤ni, i>s

ak

s∏
i=1

α
(ni)
ki

(xi)
d∏

i=s+1

ξki(xi) = 0 a.e. ,

where in the case s = d the last product is not considered. Using (3.2),
(3.3), (3.10) and (3.11), for the set

C
(n)
k =

{
x ∈ (0, 1) :

∣∣∣α(n)
k (x)

∣∣∣ < 4−(n+k)
}

we get
m
(
C

(n)
k

)
> 1− 4−(n+k).

Denote

C(n) =
∞⋂
k=1

C
(n)
k ⊂ (0, 1),

C =
⋃
m≥1

⋂
n≥m

C(n) ⊂ (0, 1),

A = {x = (x1, . . . , xd) ∈ Qd : xk ∈ C} ⊂ Qd.

We have

m
(
C(n)

)
> 1−

∞∑
k=1

4−(n+k) > 1− 4−n.
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Thus we get m (C) = 1 and therefore m (A) = 1. Besides, for any
x ∈ A there exists n(x) = (n1(x), . . . , nd(x)) such that

(3.16)

∣∣∣α(n)
ki

(xi)
∣∣∣ < 4−(ni+ki), i = 1, 2, . . . , d, k = 1, 2, . . . ,

for any n > n(x), x ∈ A.

If s = d, then (3.15) is immediate. Indeed, we have |ak| ≤ ‖f‖1

√
k1 . . . kd

and so for any x ∈ A and n > n(x) we get∣∣∣∣∣∑
k

ak

d∏
i=1

α
(ni)
ki

(xi)

∣∣∣∣∣ ≤ ‖f‖1

∑
k

d∏
i=1

√
ki · 4−(ni+ki) ≤ c‖f‖1

4n1+...+nd

which implies (3.15). At this moment the proof of the theorem in the
case d = 1 is complete and we can suppose d ≥ 2.

Now consider the case 1 ≤ s < d. Denote

Bn1,...,ns
k1,...,ks

=
{
x ∈ Qd : δk1,...,ks(xs+1, . . . , xd) < (k1 . . . ks)

d · 2n1+k1+...ns+ks
}
,

Bn1,...,ns =
∞⋂

k1,...,ks=1

Bn1,...,ns
k1,...,ks

,

where δk1,...,ks is the function defined in (3.6). Using Lemma 2, we get

m(Bn1,...,ns
k1,...,ks

) > 1− Cf2−(n1+k1+...+ns+ks),

m (Bn1,...,ns) > 1− Cf
∞∑
k1=1

. . .
∞∑
ks=1

2−(n1+k1+...+ns+ks) = 1− Cf · 2−(n1+...+ns),

where

Cf = cd

∫
Qd

|f | logd−s−1(1 + |f |).

Since by the hypothesis of the theorem f ∈ L logd−2 L and we have
s ≥ 1, Cf is bounded. Hence for the sets

B =
⋃

mi≥1: i=1,...,s

⋂
ni≥mi: i=1,...,s

Bn1,...,ns ⊂ Qd

we have m(B) = 1. Observe that if x = (x1, . . . , xd) ∈ B, then there
exists a vector m(x) = (m1(x), . . . ,md(x)) such that for any n > m(x)
we have

(3.17)
δk1,...,ks(xs+1, . . . , xd) < (k1 . . . ks)

d · 2n1+k1+...ns+ks , ki ∈ N,
n > m(x), x = (x1, . . . , xd) ∈ B.
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Note that the coordinates ms+1(x), . . . ,md(x) can be chosen arbitrar-
ily. Combining (3.16) and (3.17), for any x ∈ G = A ∩ B and
n > max{n(x),m(x)} we get

(3.18)

∣∣∣∣∣ ∑
k: 1≤ki≤ni, i>s

ak

s∏
i=1

α
(ni)
ki

(xi)
d∏

i=s+1

ξki(xi)

∣∣∣∣∣
≤

∞∑
k1=1

. . .

∞∑
ks=1

s∏
i=1

∣∣∣α(ni)
ki

(xi)
∣∣∣
∣∣∣∣∣∣
ns+1∑
ks+1=1

. . .

nd∑
kd=1

ak

d∏
i=s+1

ξki(xi)

∣∣∣∣∣∣
≤

∞∑
k1=1

. . .
∞∑
ks=1

s∏
i=1

∣∣∣α(ni)
ki

(xi)
∣∣∣ · δk1,...,ks(xs+1, . . . , xd)

≤
∞∑
k1=1

. . .
∞∑
ks=1

4−(n1+k1+...+ns+ks)(k1 . . . ks)
d · 2n1+k1+...ns+ks

< Cd · 2−(n1+...+ns)

where Cd > 0 is a constant. Since m (G) = 1, (3.18) completes the
proof of Theorem 3. �

The functions f(x), g(x) ∈ L1(Qd) are said to be equivalent (f ∼ g),
if they have the same distribution function, that is

m {x ∈ Qd : f(x) > λ} = m {x ∈ Qd : g(x) > λ} , λ ∈ R.

Theorem 3 immediately implies

Theorem 4. Let Un be the operator sequence (1.8) satisfying the con-
ditions (A) and (B). If the Fourier-Haar series

(3.19)
∞∑

n=1

anχn(x)

of a function f ∈ L1(Qd) diverges almost everywhere, then there exists
a function g ∈ L1(Qd) such that g ∼ f and

(3.20) Ung(x) diverges a.e as min{ni} → ∞.

Proof. Since the series (3.19) diverges a.e., the same also holds for the
series

(3.21)
∞∑

n=1

anξn(x),
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where ξ = {ξn} is the Haar type system obtained by Theorem 3. On
the other hand (3.21) converges in L1 norm to a function

g = Sξf ∈ L1(Qd).

We have g ∼ f and
Uν(n)g(x) = (Uν(n) ◦ Sξ)f(x).

Thus, according to (3.1), we get

lim
min{ni}→0

Uν(n)g(x)− Sξnf(x) = 0 a.e.

and then the a.e. divergence of the partial sums Sξnf(x) of the series
(3.21) yields the divergence of Uν(n)g(x), which completes the proof.

�

Proof of Theorem 1. If Φ satisfies the condition (1.10), then there ex-
ists a function f ∈ Φ(L)(Qd), f(x) ≥ 0, whose Fourier-Haar series
(3.19) diverges a.e.. We will also have g ∈ Φ(L)(Qd), where g ∼ f is
the function obtained by Theorem 4. Then the relation (3.20) com-
pletes the proof of Theorem 1. �

So we consider the sequence of convolution operators

(3.22) Unf(x) =

∫ 1

0

Kn(x− t)f(t)dt,

where the kernels Kn ∈ L∞[0, 1) are 1-periodic functions and form an
approximation of identity. That is

1.
∫ 1

0
Kn(t)dt→ 1 as n→∞,

2. K∗n(x) = sup|x|≤|t|≤1/2 |Kn(t)| → 0 as n→∞, 0 < |x| < 1/2,

3. supn
∫ 1

0
K∗n(x) <∞.

It is well known that such an operator sequence Un satisfies the
conditions (A) and (B). Moreover, Unf(x) converges in Lp for any
f ∈ Lp, 1 ≤ p < ∞, and the convergence is uniformly while f is
a continuous 1-periodic function. Let (1.9) be the multiple operator
sequence generated from (3.22). It can be written in the form

(3.23) Unf(x) =

∫
Qd

Kn1(t1) . . . Knd(td)f(x− t)dt1 . . . dtd.

The following theorem determines the exact Orlicz class of functions
guaranteeing a.e. convergence for the sequence of operators (1.9). The
first part of the theorem is based on a standard argument (see for ex-
ample [2] theorem 4.2) and immediately follows from the weak estimate
of the strong maximal function.
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Theorem 5. Let Un be the sequence of operators (1.9) generated by
(3.22). Then

1) if f ∈ L logd−1 L(Qd), then Unf(x)→ f(x) a.e. as min{ni} → ∞,
2) if the function Φ satisfies the condition

lim
t→∞

Φ(t)

t logd−1 t
= 0,

then there exists a function f ∈ Φ(L)(Qd), f(x) ≥ 0, such that

(3.24) lim sup
min{ni}→∞

|Unf(x)| =∞ a.e. on Qd.

If in addition Kn(x) ≥ 0, then (3.24) holds everywhere.

Proof. We may suppose that all the functions are 1-periodic in each
variable. Since K∗n(x) is even and decreasing on [0, 1/2], we may find
a step function of the form

ϕn(x) =

m(n)∑
i=1

a
(n)
i I

(−x(n)
i ,x

(n)
i )

(x), a
(n)
i ≥ 0, x

(n)
i ≥ 0,

such that K∗n(x) ≤ ϕn(x) and∫ 1

0

ϕn(x)dx =
m∑
i=1

2x
(n)
i a

(n)
i < 2

∫ 1

0

K∗n(x)dx < B.

This implies that

(3.25)

|Unf(x)| =
∣∣∣∣∫
Qd

Kn1(t1) . . . Knd(td)f(x− t)dt1 . . . dtd

∣∣∣∣
≤
∫
Qd

K∗n1
(t1) . . . K∗nd(td)|f(x− t)|dt1 . . . dtd

≤
∫
Qd

ϕn1(t1) . . . ϕnd(td)|f(x− t)|dt1 . . . dtd

=

m(n1)∑
i=1

. . .

m(nd)∑
i=1

d∏
k=1

(2x
(nk)
i a

(nk)
i )

× 1

2dx
(n1)
i . . . x

(nd)
i

∫ x
(n1)
i

−x(n1)
i

. . .

∫ x
(nd)

i

−x(nd)

i

|f(x− t)|dt1 . . . dtd

≤Mf(x)

m(n1)∑
i=1

2x
(n1)
i a

(n1)
i . . .

m(nd)∑
i=1

2x
(nd)
i a

(nd)
i ≤ BdMf(x).
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Hence, according to (2.11), we have

(3.26) m{x ∈ Qd : sup
n
|Unf(x)| > λ} ≤ cd

∫
Qd

|f |
λ

logd−1

(
1 +
|f |
λ

)
.

Now take a function f ∈ L logd−1 L(Qd). Let λ > 0 be an arbitrary
number. Observe that for any ε > 0 we can write f in the form f = g+h
where g is continuous and∫

Qd

2|h|
λ

< ε,

∫
Qd

2|h|
λ

logd−1

(
1 +

2|h|
λ

)
< ε.

From the continuity of g we have Ung(x) uniformly converges to g(x).
Thus, applying (3.26) and the Chebyshev’s inequality, we get

m

{
x ∈ Qd : lim sup

min{ni}→∞
|Unf(x)− f(x)| > λ

}

= m

{
x ∈ Qd : lim sup

min{ni}→∞
|Unh(x)− h(x)| > λ

}

≤ m

{
x ∈ Qd : sup

n
|Unh(x)| > λ/2

}
+ {x ∈ Qd : |h(x)| > λ/2}

≤ cd

∫
Qd

2|h|
λ

logd−1

(
1 +

2|h|
λ

)
+

∫
Qd

2|h|
λ

< (cd + 1)ε.

Since ε > 0 can be small enough, we obtain

m

{
x ∈ Qd : lim sup

min{ni}→∞
|Unf(x)− f(x)| > λ

}
= 0

for any λ > 0. This implies the first part of the theorem.
To prove the second part, we apply Theorem 1. Then we find a

function f ∈ Φ(L)(Qd), f(x) ≥ 0, satisfying (3.24) almost everywhere.
To get everywhere divergence in the case Kn(x) ≥ 0, we modify the
function f(x) as follows. Suppose E ⊂ Qd is the set where (3.24)
doesn’t hold. We have mE = 0. Define a sequence of open sets Gn ⊂
Qd, E ⊂ Gn ⊂ Gn−1, such that

m(Gn) < 2−n.

Then we consider the function

f̃(x) = f(x) + g(x), g(x) =
∞∑
n=1

n · IGn(x).
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It is easy to check that g and so f̃ is from Φ(L) and

lim
min{ni}→∞

Ung(x) = +∞, x ∈ E.

Using then the positivity of the operators Un, one can easily get the
divergence of Unf̃(x) at any x ∈ Qd. �

4. Estimates of Lp-norms

In this section we suppose p ≥ 1 is fixed and consider a sequence of
operators Un satisfying (A) and a stronger condition
(Bp) if f ∈ Lp(0, 1), then ‖Unf − f‖Lp(0,1) → 0 (p ≥ 1),

instead of (B). Note that, according to the Banach-Steinhaus theorem,
the condition (Bp) implies

(4.1) 1 ≤M = sup
n≥1
‖Un‖Lp→Lp <∞.

The following theorem is the main result of this section.

Theorem 6. If 1 ≤ p < ∞, δn ↘ 0 and the sequence of bounded
linear operators Un in L1(0, 1) satisfies the conditions (A) and (Bp),
then there exist a Haar type system ξ = {ξn(x)} and a sequence of
integers 0 < ν(1) < ν(2) < . . . < ν(k) < . . . such that

(4.2)
∥∥(Uν(n) ◦ Sξ

)
− Sξn

∥∥
p
< δm, min{nk} ≥ m.

The proof of the next lemma is similar to Lemma 1. So it will be
stated shortly.

Lemma 3. Let p ≥ 1, εi ↘ 0 and the sequence of bounded linear
operators (1.8) satisfies the conditions (A) and (Bp). Then there exist
a sequence of integers 0 < ν(1) < ν(2) < . . . < ν(k) < . . . and a Haar
type system ξ = {ξn(x)} such that∥∥Uν(n)ξi(x)− ξi(x)

∥∥
p
< εn, i = 1, 2, . . . , n,(4.3)

‖Uν(n)ξi(x)‖p < εi, i > n.(4.4)

for any n = 1, 2, . . ..

Proof. We will use induction. Define ξ1(x) ≡ 1. Using the property
(Bp), we may find a number ν(1), satisfying (4.3) for n = 1. Then
suppose we have already chosen the numbers ν(1) < ν(2) < . . . < ν(k)
and the first k functions of the system ξ = {ξn(x)}, satisfying the
relations (4.3) and (4.4) for n = 1, 2, . . . k. From the compactness of
the operators it follows the existence of a number pk+1 > pk such that∥∥Uν(i)

(
rpk+1

(x)IEk(x)
)∥∥

p
< εk+1, i = 1, 2, . . . , k.
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Defining ξk+1 = rpk+1
IEk we will have (4.4) for i = k + 1 and for each

1 ≤ n ≤ k. Then using the property (Bp), we may chose ν(k + 1)
satisfying (4.3) for n = k + 1 and for each 1 ≤ i ≤ k + 1. This
completes the induction and the proof of Lemma 3. �

The following lemma was proved in [11].

Lemma 4 ([11]). If U and V are bounded linear operators on L1[0, 1),
then

(V )n ◦ (U)m = (U)m ◦ (V )n, n 6= m, 1 ≤ n,m ≤ d.

Proof of Theorem 6. One dimensional case: To prove (4.2) in one di-
mensional case, we must construct a Haar type system ξ and a sequence
of integers ν(n) such that

(4.5)
∥∥Uν(n) ◦ Sξ − Sξn

∥∥
p
< δn, n = 1, 2, . . . .

Using Lemma 3, we find ξ with the relations (4.3) and (4.4), where the
sequence εn ↘ 0 satisfies the inequality

εn < δn/4
n, n = 1, 2, . . . .

Take an arbitrary function

f(x) =
∞∑
n=1

anχn(x) ∈ Lp.

We have

Sξf(x) =
∞∑
k=1

akξk(x),

Sξnf(x) =
n∑
k=1

akξk(x),

(
Uν(n) ◦ Sξ

)
f(x) =

∞∑
k=1

akUν(n)ξk(x).
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Thus, using the bound |ak| ≤
√
k‖f‖p and the conditions (4.3), (4.4),

we get ∥∥(Uν(n) ◦ Sξ − Sξn
)
f(x)

∥∥
p

=

∥∥∥∥∥
n∑
k=1

ak
(
Uν(n)ξk(x)− ξk(x)

)
+

∞∑
k=n+1

akUν(n)ξk(x)

∥∥∥∥∥
p

≤ εn

n∑
k=1

|ak|+
∞∑

k=n+1

|ak|εk

≤ ‖f‖p

(
n
√
nεn +

∞∑
k=n+1

√
kεk

)
< δn‖f‖p

which implies (4.5).
The general case: Applying the one dimensional case of the theorem,

we may find a Haar type system with

(4.6)
∥∥Uν(n) ◦ Sξ − Sξn

∥∥
p
< γn, n = 1, 2, . . . .

where
γn ↘ 0, γn ≤ δn/M

d,

and M is the constant defined in (4.1). We claim that

(4.7)
∥∥⊗µk=1

(
Uν(nk) ◦ Sξ

)
k
−⊗µk=1

(
Sξnk
)
k

∥∥
p

< γmin{n1,...,nµ} ·Mµ

The proof of (4.7) is by induction on the dimension µ = 1, 2, . . . , d.
The case µ = 1 is just (4.6), since by (4.1) we have M ≥ 1. Writing
(4.6) with respect to each coordinate, we get

(4.8)
∥∥(Uν(n) ◦ Sξ)k − (Sξn)k

∥∥
p
< γn.

Suppose the case of dimension µ− 1 is already proved that is

(4.9)
∥∥⊗µ−1

k=1

(
Uν(nk) ◦ Sξ

)
k
−⊗µ−1

k=1

(
Sξnk
)
k

∥∥
p
≤ γmin{n1,...,nµ−1}M

µ−1.

Let us prove the case of µ-dimension. Observe that

(4.10)

⊗µk=1

(
Uν(nk) ◦ Sξ

)
k
−⊗µk=1

(
Sξnk
)
k

=
[
⊗µ−1
k=1

(
Uν(nk) ◦ Sξ

)
k

]
◦
[(
Uν(nµ) ◦ Sξ

)
µ
−
(
Sξnµ

)
µ

]
+
[
⊗µ−1
k=1

(
Uν(nk) ◦ Sξ

)
k
−⊗µ−1

k=1

(
Sξnk
)
k

]
◦
(
Sξnµ

)
µ
.
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Besides, we have∥∥∥∥(Sξnµ)
µ

∥∥∥∥
p

≤ 1,

∥∥⊗µ−1
k=1

(
Uν(nk) ◦ Sξ

)
k

∥∥
p
≤

µ−1∏
k=1

∥∥Uν(nk)

∥∥
p

∥∥(Sξ)
k

∥∥
p
≤Mµ−1,

and therefore, using also (4.8), (4.9) and (4.10), we get the estimate∥∥⊗µk=1

(
Uν(nk) ◦ Sξ

)
k
−⊗µk=1

(
Sξnk
)
k

∥∥
p

≤ γnµM
µ−1 + γmin{n1,...,nµ−1} ·Mµ−1 ≤ γmin{n1,...,nµ}M

µ,

which completes the induction and the proof of (4.7). Then, applying
Lemma 4 several times, we obtain

Uν(n) ◦ Sξ = ⊗dk=1

(
Uν(nk)

)
k
◦ ⊗dk=1

(
Sξ
)
k

= ⊗dk=1

(
Uν(nk) ◦ Sξ

)
k
,

and therefore we get(
Uν(n) ◦ Sξ

)
− Sξn = ⊗dk=1

(
Uν(nk) ◦ Sξ

)
k
−⊗dk=1

(
Sξnk
)
k

which means that in the case µ = d the inequality (4.2) coincides with
(4.7). Theorem 6 is proved. �

If a . b and a & b are satisfied in the same time, then we write
a ∼ b.

For the operator sequence Un generated by (1.8) we consider the
maximal operator

U∗f(x) = sup
n
|Unf(x)| .

The norm of this operator is defined by

‖U∗‖p = sup
‖f‖p≤1

‖U∗f(x)‖p

This quantity describes the least constant c > 0 for which the inequality

‖U∗f(x)‖p ≤ c‖f‖p
holds for any f ∈ Lp(Qd). The similar operator for the partial sums of
Fourier-Haar series is denoted by

S∗f(x) = sup
n
|Snf(x)| .

We will consider also the maximal operator generated by a Haar type
system defined

(Sξ)∗f(x) = sup
n

∣∣Sξnf(x)
∣∣



22 GYÖRGY GÁT AND GRIGORI KARAGULYAN

It is well known the estimate

(4.11) ‖Mf(x)‖p ∼
(

p

p− 1

)d
‖f‖p, 1 < p <∞,

(see for example [4]), which implies also

(4.12) ‖(Sξ)∗‖p = ‖S∗‖p ∼
(

p

p− 1

)d
.

We prove the following

Theorem 7. If 1 < p < ∞ and the sequence of bounded linear opera-
tors (1.8) satisfies the conditions (A) and (Bp) and Un is generated by
(1.8), then

(4.13) ‖U∗‖p ≥ ‖S∗‖p.

Proof. Let ε > 0 be arbitrary. Using (4.12) we may choose a function
f ∈ Lp(Qd) with ‖f‖p = 1 such that

‖S∗f(x)‖p > ‖S∗‖p − ε.

Obviously we can fix an integer m such that

(4.14)
∥∥∥∥ sup

n:ni≤m
|Snf(x)|

∥∥∥∥
p

≥ ‖S∗‖p − 2ε.

We take an arbitrary sequence δn ↘ 0 such that δk = ε/md, k =
1, 2, . . . ,m. Applying Theorem 6 with this sequence, we determine a
Haar type system ξ and a sequence of integers ν(n) satisfying (4.2).
Denote g(x) = Sξf(x). We have ‖g‖p = ‖f‖p = 1, and from (4.2),
(4.14) it follows that

‖U∗g(x)‖p ≥
∥∥∥∥sup

n

∣∣Uν(n)g(x)
∣∣∥∥∥∥
p

=

∥∥∥∥sup
n

∣∣(Uν(n) ◦ Sξ
)
f(x)

∣∣∥∥∥∥
p

≥
∥∥∥∥ sup

n:ni≤m

∣∣(Uν(n) ◦ Sξ
)
f(x)

∣∣∥∥∥∥
p

≥
∥∥∥∥ sup

n:ni≤m

∣∣Sξnf(x)
∣∣∥∥∥∥
p

−md · ε
md

=

∥∥∥∥ sup
n:ni≤m

|Snf(x)|
∥∥∥∥
p

− ε

> ‖S∗‖p − 3ε.

Since ε > 0 is arbitrary, we obtain (4.13). �
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Theorem 8. Let 1 < p < ∞ and the kernels Kn(x) form an approxi-
mation of identity. Then the multiple operator sequence Un defined in
(3.23) satisfies the relation

‖U∗‖p ∼
(

p

p− 1

)d
.

Proof. The lower bound

‖U∗‖p &
(

p

p− 1

)d
immediately follows from (4.12) and Theorem 7. To prove the upper
bound we use the estimate (3.25). So we have

(4.15) |U∗f(x)| ≤ c ·Mf(x)

where Mf(x) is the strong maximal function. From (4.15) and (4.11)
we conclude

‖U∗f(x)‖p .
(

p

p− 1

)d
‖f‖p

and therefore we get ‖U∗‖p .
(

p
p−1

)d
, which completes the proof of

the theorem. �
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