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A MIXED PROBLEM FOR THE FOURTH ORDER DEGENERATE
ORDINARY DIFFERENTIAL EQUATION

ESMAIL YOUSEFI"
Azad University of Karraj, Iran

A mixed problem for the equation
Lu=@“u") +au=f, (1)
where 0<a <4, t€[0,b], feL(0,b), is considered. Firstly, the weighted

Sobolev spaces W}, W>(0), W2(b) and the generalized solution to equation (1)

are defined. Next, the existence and uniqueness of the generalized solution for the
mixed problem is studied, as well as the description of the spectrum of
corresponding operator is given.
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1. Problem Formulation. Consider the mixed problem for the following
ordinary differential equation of the fourth order
Lu={"“u") +au=f, )
where 0<a <4, t<[0,b], f€L,(0,b), a=const.

Define the weighted Sobolev spaces W, W, (0), W} (b)and consider the
behavior of functions from these spaces in neighborhood of ¢ =0. Then, define the
generalized solution to the mixed problem for the equation (1). The existence and
uniqueness of the generalized solution are proved under some conditions on
coefficient a. Moreover, we have to give a description of the spectrum of operator
L and the operator domain D(L).

Note that the Dirichlet problem for degenerate ordinary differential equa-
tions of second and fourth orders have been considered in [1, 2], and for higher
orders — in [3].

2. The Spaces W}, W2(0), W2(b).Let @ >0, and ¢ belongs to the finite

interval (0,b). Consider the set Wm2 of the functions u(¢), which have generalized

w'(0)f dt is finite.

b
derivatives of second order, such that the semi-norm ||u||1 = I t*
0
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First note, that for the functions u eWm2 for every f,<(0,b] there exist finite
values u(¢,) and u'({,)(see [3]). Below we study the behavior of functions u(¢)
and u'(1) in neighborhood of #=0.

Proposition 1. For u eWm2 the following inequalities hold:

|u(t)|2 < (c1 +czt3_“ )"u 12 ,azl, a#3, )

|u'(l‘)|2 < (c1 et )”u

2
1

,a#1. 3)
In (2) £*“is replaced with |ln t| for ¢ =3, with ° |ln t| for ¢ =1;in (3) ¢
is replaced with |In¢| (see [4]).

From the inequality (2) for 0<a <4 we get the inequality
< c||u " 4)

e

L, (0,b)
i.e. we have the following embedding

W, <L, (0,b). 5)
The embedding (5) is true also for o =4 and fails for « >4 (see [4]).

Now we can define the following norm in
b

2 al n 2 2

o= (e b @F + o] e (©6)
0

The space W’ is a Hilbert space with scalar product

a

e

(u,v)a :(t"‘u",v")+(u,v), where () stands for the scalar product inL,(0,b).
Obviously, for 0 <a <4 we have the following inequality
< c"u w2 (7

Proposition 2. The embedding (5) for 0<«a <4 is compact.

Note also that for o =4 the continuous embedding (5) is not compact
(see [2]).

Denote by #,7(0) the subspace of W, , for which u(0)=u'(0)=0, if they

exist. Note that for 3<a <4 we have W, (0)= W?. As norm in the space W(0)

e

L,(0,b)

we use the norm (6). For 0<a <1 the co-dimension of the space W (0) in W} is
equal to dim/ /W (0)=2 and for 1<a <3 codimW, (0)=dimw, /W}(0)=1
(see Proposition 1).

Define by Wm2 (b) the subspace of Wm2 , for which u(b)=u'(b)=0. As

b
fVé(b) - ! r
For 0<a <4 the co-dimension of the space W] (b) in W] is equal to
codimW?(b) =dimW? /W?2(b) = 2 . Note that the embedding W (0) = L,(0,b) and
W, (b) < L, (0,b) are compact for 0<a <4 (see Proposition 2).

an equivalent norm to norm (6) we use |ju u"(t)|2dt in W} (b).
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3. The Mixed Problem. In this section we define the generalized solutions
of the mixed problem for equation (1) in spaces Wm2 (0) and Wa2 (b).
Definition 1. The function u e, (0) is called the generalized solution of

the mixed problem for equation (1), if for every ve Wm2 (0) the following equality
holds:

(tau",v")-i-a(u,v):(f,v). ®)
Note that, if the generalized solution u € W (0) is classical, then for o =0
we get the following conditions (see [5]) u(0)=u'(0)=u"(b)=u"(b)=0.
Consider the particular case of equation (1) when a=1:
Buz(tau")” +u=f. 9

Proposition 3. For every f e L,(0,b) the generalized solution of the mixed

problem for equation (9) exists and is unique.
Proof. Uniqueness of the generalized solution for equation (9) immediately
follows from the equality (8) (with a=1), if weput f =0 and v=u. To prove the

existence we define the functional [, (v)=(f,v),f eL,(0,b) over the space
W, (0) . Using the inequality (7) we get

by O =) ek

i.e. 1,(v) is a linear continuous functional over the space W, (0). Using Riesz

2

<[

2 2 2
<l 0 M
L,(0,b) ||v L,(0,b) cllf L,(0.,b) v Wy’

lemma on the functional representation we get [, (v)=(u,,v) ., u, €W, (0).
Therefore, the function u,, is the generalized solution for equation (9) (see [1]).

Define the operator B:L,(0,b) — L, (0,b) corresponding to Definition 1.

Definition 2. We say that the function u W, (0) belongs to the domain
D(B) of operator B, if there exists f €L, (0,b), such that the equality (8) is valid.
In this case we write Bu= f.

Theorem 1. Operator B:L,(0,b)— L,(0,b) is positive and self-adjoint.
The bounded operator B™': L, (0,5) — L, (0,b) for 0<a <4 is compact.

Proof. The symmetry and positivity of the operator B is a direct
consequence of Definition 2. The coincidence of D(B) and D(B*) (B" is the

adjoint to operator B) follows from the existence of a generalized solution of (9) for
every fel, (O,b) (see Proposition 3). Note that Definition 2 implies the inequality

we < c||Bu

( L,(0.6)°

The compactness of the operator B™' for 0<a <4 now follows from
Proposition 2.
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Corollary 1. For 0<a <4 the operator B has a discrete spectrum, and its
eigenfunction system is complete in f € L, (0,5) (see [5]).

Note that now we can rewrite equation (1) in the form Bu=(1-a)u+f, i.e.
we can refer the number 1—a as a spectral parameter.

Now we define the generalized solution in the space Wm2 (b).

Definition 3. The function u e W (b) is called the generalized solution of
the mixed problem for equation (1), if for every ve W (b) the equality (8) holds.

Note that, if the generalized solution u e Wm2 (b) is classical, then for o =0
we get the following conditions (see [5]) ©"(0)=u"(0)=u(b) =u'(b) =0.
Consider the particular case of equation (1) for a =0

Su = (t“u")" =f. (10)

Proposition 4. For every f €L,(0,b) the generalized solution of the mixed

problem for equation (10) exists and is unique.
The proofis similar to the proof of the Proposition 3.
Define the operator S: L, (0,6) — L,(0,b) corresponding to Definition 3.

Definition 4. We say that the function u eWm2 (b) belongs to the domain
D(S) of operator S, if there exists f € L,(0,b), such that the equality (8) is valid.
In this case we write Su = f.

Theorem 2. Operator S:L,(0,b) > L,(0,b) is positive and self-adjoint.

The bounded operator S~ : L,(0,b) > L,(0,b) for 0<a <4 is compact.
The proofis similar to the proof of the Theorem 1.

Corollary 2. For 0<a <4 the operator S has a discrete spectrum, and its
eigenfunction system is complete in L,(0,b) (see [6]).

Note that now we can rewrite equation (1) in the form Su=—au+ f, ie.
we can refer the number —a as a spectral parameter.
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Euduypy 8niutdh

Twnp Jutmhp snppnpn fuipgh untnpuiljwi JEpuubpdng
nhdtpkughw) hwjuuupdwt hwdwp
Ushuwnwiipmu nhinwplynid £ pwnp jainhp hbnlyw) hwjuuwpdwt hadwnp.
Lu=t"u") +au=f, (1)
npnkn 0<a <4, te[0,b], f €L,(0,6): Lupu nwhdwiynud i Unpnjlih §onuht
w2, w20y, WX(b) wwpwdnipmibitpp b (1) hwjuuwplwb pinhwipug]us

(nwdnudp: Ujunthbnb ghunwplymd Eu pughwipugyws nsdwb gnjnipjut b
dhwlnipjut hwpgbpp, htyybu twb wpynud E huwdwywnwuppwb oykpunnph

uyklunph tjuwpughpp:
Ecmana FOcedu.

CMmemianHast 3a1a4a 1151 00bIKHOBEHHOI'0 BbIpOkaaromerocs 1uddepeHnaabHOro
YPaBHEHHA Y€TBEPTOr0 NOPAAKA
B pabote paccmaTrpuBaeTcs CMeEIIaHHAsS 3a/1a4a JUll YPaBHEHHs
Lu={“u") +au=f, (1)
rie 0<a <4, te[0,b], f<L,(0,b). Creppa onpenensroTcst BECOBbIE IPOCTPaH-

crBa CobosieBa Wm2 , Waz(O), Waz(b) 1 00O0OIICHHOE pEIlleHUe IS YPaBHEHUS

(1). 3aTem m3ydaercsi BOMPOC CYIIECTBOBAHMSA M €AMHCTBEHHOCTH 0OOOILEHHOTO
pelleHus, a TaKKe JaeTcsl ONMCaHue CIIEKTpa JIsl COOTBETCTBYIOLIETO ONepaTopa.



