ЗАКОНОМЕРНОСТИ СОЛЮБИЛИЗАЦИИ И ПОЛИМЕРИЗАЦИИ В ВОДНЫХ РАСТВОРАХ ОКСАМИНА С-60

Изучены процессы солюбилизации и сосолюбилизации стиrolа и метилметакрилата, а также их полимеризации и сополимеризации в водных растворах оксамина С-60. Показано, что закономерности коллоидного растворения и эмульсионной полимеризации зависят от структурных изменений системы оксамин—вода.

В работе [1] показано, что в водных растворах оксамина С-60 сферические мицеллы при концентрации оксамина —1,2% переходят в форму эллипсоидов вращения, и этот переход отражается на кинетике эмульсионной полимеризации стиrolа. Согласно [2] солюбилизация является первичным этапом эмульсионной полимеризации (ЭП), и с этой точки зрения необходимо изучить зависимость солюбилизации от структурных изменений мицелл. Это дало бы дополнительную информацию о роли солюбилизации в процессе ЭП.

Нами изучены солюбилизация и сосолюбилизация, полимеризация и сополимеризация стиrolа и метилметакрилата в водных растворах—октанола, N-диметиламинометане (полиоксиэтиленгликоль) аммиак с техническим назначением оксамин С-60 (ОКА). Оба эти мономера отличаются друг от друга растворимостью в воде. В качестве инициатора взят персульфат калия (ПК) с постоянной концентрацией 5·10^-5 моль/л. Очистка мономеров, ОКА и ПК проводилась по методикам, приведенным в [1, 2, 3]. Методика проведения экспериментов солюбилизации описана в [4]. Кинетику ЭП изучали диатометрически при соотношении мономер—водная фаза 1:3 (по объему). При солюбилизации и сополимеризации соотношение стиrol—метилметакрилат равно 7:3. Все измерения проводились при температуре 40±0,1°C.

Исследования показали, что структурные изменения, происходящие с мицеллой, влияют на процесс солюбилизации. С ростом концентрации ОКА величина солюбилизации изученных мономеров увеличивается (рис. 1, 2), причем влияние ОКА на рост величины солюбилизации одинаково. Следует отметить, что метилметакрилат и стиrol сильно отличаются друг от друга по дипольным моментам и растворимостью в воде, и поэтому метилметакрилат в основном должен локализоваться на гидрофильно-гидратированных зонах, а стиrol в основном — в гидрофобном участке мицелл [5]. По-видимому, рост концентрации ОКА одинаково влияет на увеличение гидрофильно-гидратированных и гидрофобных объемов мицелл. Как следует из рис. 1, 2, в обоих случаях рост величины и скорости солюбилизации при низких концентрациях ОКА больше, чем при его сравнительно высоких концентрациях. Рост величины солюбилизации стиrolа и метилметакрилата при концентрациях ОКА соответственно 0,5—1,0% и 2—3% сильно уменьша-

УДК 541.182:541.6"
Рис. 1. Зависимость скорости (2) и величины солюбилизации (1) стирола от концентрации оксамина.

Рис. 2. Зависимость величины (2) и скорости (1) солюбилизации метилметакрилата от концентрации оксамина.

ется. Для скорости солюбилизации стирола в указанном интервале концентрации ОКА наблюдается перелом (рис. 1), а скорость солюбилизации метилметакрилата при концентрации ОКА, равной 2%, принимает максимальное значение (рис. 2). Из полученных данных следует, что солюбилизирующая способность сферической формы мицелл больше, чем у асимметрических мицелл. Излом на кривых концентрационных зависимостей скорости и величины солюбилизации (рис. 1, 2), вероятно, связаны с обратным действием солюбилизаторов на структуру или форму мицелл [7]. Эти два фактора предопределяют зависимость скорости солюбилизации обоих мономеров от концентрации ОКА (рис. 1, 2).

Экспериментальные данные показывают, что структурные изменения, происходящие в водных растворах ОКА, влияют на ЭП стирола и метилметакрилата [1] (рис. 3). При их гомополимеризации при концентрации ОКА, равной примерно 1%, наблюдается перелом на кривых зависимости скорости ЭП от концентрации ОКА [1] (рис. 3).

Рис. 3. Зависимость скорости полимеризации метилметакрилата от концентрации оксамина.

Рис. 4. Зависимость величины (2) и скорости (1) сополимеризации и скорости сополимеризации (3) стирола и метилметакрилата от концентрации оксамина.

Кинетика совместной солюбилизации стирола и метилметакрилата также зависит от структурных изменений мицелл ОКА (рис. 4). Однако
Закономерности солюбилизации...

в этом случае изменение скорости солюбилизации больше при высоких концентрациях ОКА в отличие от изменения скорости солюбилизации стирола или метилметакрилата в отдельности. Зависимость величины солюбилизации от концентрации ОКА аналогична зависимости величины солюбилизации стирола и метилметакрилата. Концентрационный интервал изменения структуры мицелл по сравнению с солюбилизацией стирола смещен к более высоким концентрациям ОКА, а по сравнению с солюбилизацией метилметакрилата — к его более низким концентрациям (рис. 1, 2, 4). Это свидетельствует о совместном влиянии стирола и метилметакрилата на структурные изменения мицелл ОКА. При совместной солюбилизации начальное соотношение стирол-метилметакрилат было равно 7:3, а в конце процесса — 7,8:2,2, причем это соотношение не зависит от концентрации ОКА. Эти данные свидетельствуют о том, что как в ходе процесса сополимеризации, так и в равновесном состоянии в мицеллах находится больше молекул метилметакрилата, чем стирола. Если солюбилизация является первичным этапом ЭП, то кинетика ЭП во многом должна определяться закономерностями транспортировки мономеров в мицеллы. Исходя из данных солюбилизации можно было проследить зависимость изменения количества метилметакрилата в составе сополимера, зависящую от концентрации ОКА. Однако экспериментальные данные показывают, что соотношение стирола-метилметакрилата изменяется в изученном концентрационном интервале ОКА [1, 8]. Из рис. 2, 4 видно, что концентрация ОКА в соответствии с переломов на кривых зависимости скорости и величины солюбилизации и скорости ЭП от концентрации ОКА не совпадают. То же самое наблюдается и в случае стирола [1] (рис. 1). Зависимость скоростей солюбилизации и полимеризации от концентрации ОКА различны (рис. 1—4). По нашему мнению, приведенные факты показывают, что солюбилизация не играет определяющей роли в ЭП.

Кафедра физической и коллоидной химии

Поступило 10.03.1983

ЛИТЕРАТУРА

1. Акопян Г. Д. К вопросу о роли мицел в эмульсионной полимеризации стирола.— Молодой научный работник ЕГУ, 1980, № 2, с. 189.
3. Юргенко А. Н. Физико-химические исследования в области полимеризации углеводов в эмульсиях.— ЖОХ, 1946, т. 16, № 8, с. 1171.
5. Асоян, А. С. Бейлерян Н. М., Налчаджян С. О. Кинетика эмульсионной полимеризации метилметакрилата, инициированной системами персульфат—амины.— Арм. хим. ж., 1979, т. 32, № 9, с. 699.
6. Арутюнян Р. С., Бейлерян Н. М., Атанасян Е. Н., Симонян Л. X. Влияние некоторых органических добавок на коллоидно-химические свойства пентадецилсульфоната натрия.— Арм. хим. ж., 1978, т. 31, № 8, с. 560.
8. Акопян Г. Д., Бейлерян Н. М. Особенности эмульсионной полимеризации стирола в присутствии эмульгатора оксамила С-60.— Арм. хим. ж., 1981, т. 34, № 9, с. 801.
Ա. Ա. Նարեկացու, Զ. Բ. Ստեփանյան, Ն. Ե. Թորակին

Արխիվային բուն զարմիկային օրագրականագրական
ուսում C—60-ի գրավոր գրավորականություն

Գրավորականության զարմիկային օրագրականագրական գրավորության կողմունքներով, ներկայացվող սահմանափակ արտահայտության կազմակերպման հերթում ծառայող ուրուգվարություն ու պատճառաբանություն էլ էլ արդիակ, որ արխիվային բուն զարմիկային օրագրականագրական գրավորության կողմունքներով զարմիկային օրագրականագրական գրավորության կողմունքներով զարմիկային օրագրականագրական գրավորության կողմունքներով զարմիկային օրագրականագրական գրավորության կողմունքներով