КИНЕТИКА РЕАКЦИЙ СИСТЕМ АКРИЛАМИД - ПИПЕРИДИН И АКРИЛАМИД - МОРФОЛИН В ВОДЕ

Исследованы реакции систем акриламид - пиперидин и акриламид - морфолин в воде в интервале температур 30-50°С. Показано, что исследуемые реакции бимолекулярны, по компонентам первого порядка. Разработан метод хроматографического разделения исходных аминов от продуктов реакций соответствующих третичных аминов. С учетом литературных данных о реакциях персульфата калия с пиперидином и морфолином показана несостоятельность утверждений о том, что эти бинарные системы ингибируют полимеризацию виниловых соединений. На примере акриламида показано, что полимеризация ингибируется системами персульфат калия - третичные амины (продукты взаимодействия акриламида с пиперидином и морфолином).

Оксилительно-восстановительные системы пероксид - амины используются в качестве инициаторов полимеризации виниловых мономеров при комнатной температуре. В работе [1] установлена корреляция между потенциалом ионизации аминов и логарифмом константы первичного акта их окисления персульфатом калия в водных и пероксидах в неводных растворах.

Реакции с участием аминов, для которых потенциал ионизации \(I > 8.3B \), протекают преимущественно по нерадикальному, а в случае \(I \leq 8.3B \) - в основном по радиальному механизму. В работе [2] показано, что реакции персульфата калия (ПК) с пиперидином (ПП) и морфолином (МФ) протекают по нерадикальному механизму (т.к. \(I > 8.3B \)), т.е. указанные системы в принципе не должны инициировать процесс полимеризации. Согласно работе [3], системы ПК-ПП и ПК-МФ инициируют полимеризацию виниловых мономеров. Причину противоречия, очевидно, можно объяснить тем, что виниловые мономеры взаимодействуют со вторичными аминами [4,5] с образованием соответствующих третичных аминов, а последние могут конкурировать с исходными вторичными аминами в реакциях с ПК. Поэтому возникает необходимость определения и сравнения скоростей реакций: мономер - амин и ПК - амин. В качестве мономера нами использован акриламид (АА), хорошо растворяемый в воде, в качестве вторичного амина - ПП и МФ.

Экспериментальная часть и обсуждение результатов. Очистка исходных веществ проводилась согласно работе [6]. Реакция виниловый мономер - вторичный амин протекает с уменьшением объема, поэтому скорость реакции определялась методом дилатометрии. Продукты реакции определялись методом тонкослойной хроматографии. При изучении реакций АА - ПП в воде получен следующий закон скорости реакции:

\[W = K[AA][ПП]. \]

Аналогичный закон получен и для реакции АА - МФ, т.е. порядок этих реакций является вторым, по компонентам реакции - первым. Рассчитаны значения \(K_{20°} \) составляют 9,4 \(10^4 \) и 6,0 \(10^4 \) М\(^{-1}\)с\(^{-1}\) соответственно. Сравнение значений констант скоростей изученных реакций показывает, что \(K_{АА-ПП} > K_{АА-МФ} \), что можно объяснить из различия основностей этих близких по объему молекул аминов, константы основностей которых \(K_{ПП} = 1,7 \ 10^3 \) и \(K_{МФ} = 2,0 \ 10^5 \) [7]. Исследовано влияние температуры
на скорость этих реакций. Eₐ, для реакции AA - ПП и AA - МФ составляют -8,5±0,5 и 7,5±0,5 кДж/моль соответственно.

Для обнаружения продуктов реакции AA - ПП ([β-пиперидилакриламид([β-ППАА]) и AA - МФ ([β-морфолилакриламид ([β-МФАА])] применялся метод тонкослойной хроматографии. Использовались пластинки "Silufol UV-254", алюмент -1,4- диоксанбензол - насыщенный водный раствор аммиака в соотношении 3:0,5:0,5. Хроматограммы проявлялись парами йода. Полученные данные приведены в таблице.

<table>
<thead>
<tr>
<th>Амин</th>
<th>ПП</th>
<th>β-ППАА</th>
<th>МФ</th>
<th>β-МФАА</th>
</tr>
</thead>
<tbody>
<tr>
<td>R,</td>
<td>0,2</td>
<td>0,42</td>
<td>0,3</td>
<td>0,4</td>
</tr>
</tbody>
</table>

В работе [3] показано, что константа скорости реакции ПК - ПП в воде при 30°C равна 2,6 10⁻³ M⁻¹ c⁻¹, а по нашим данным, константа скорости реакции ПП - AA при тех же условиях 7,4 10⁻² M⁻¹ c⁻¹. Для реакции ПК - МФ в воде при 40°C константа скорости равна 6,9 10⁻³ M⁻¹ c⁻¹, а для реакции МФ - AA при тех же условиях 6,0 10⁻⁴ M⁻¹ c⁻¹. Учитывая, что концентрация мономера (AA) в полимеризации системе 2-4 порядка выше концентрации ПК, можно считать, что вторичные амины ПП и МФ в основном будут реагировать с мономером (AA), а продукт этой реакции (третичный амин) будет реагировать с ПК и инициировать полимеризацию мономера.

Следовательно, утверждение в работе [3] о том, что инициатором полимеризации виниловых мономеров является система ПК - вторичные амины (ПП и МФ), неверно. В действительности, инициатором реакции является система ПК - третичный амин (продукт реакции мономер + вторичный амин).

Кафедра физической и коллоидной химии

Поступила 3.06.1994.

ЛИТЕРАТУРА

1. Бейлери Н.М. О корреляции между потенциалом нониизации аминов и скоростью их окисления перекисями. - Уч. зап. ЕГУ, 1971, №1, с.128.
7. Альберт А., Сержент Е. Константы нониизации кислот и оснований, 1964, с.137.

Ф.И.О. доктора физико-математических наук

ГРАФИК УСТОЙЧИВОСТИ - ПРОИЗВОДНЫХ ФУЛЛРОНА-ФУЛЛРОН
ПЛАСТИН" 1987г. 1200x827

У. Ф. Ф. Ф. Ф. Ф.