GEOMETRIC PROBABILITY CALCULATION FOR A TRIANGLE

N. G. AHARONYAN ∗, H. O. HARUTYUNYAN ∗∗

Chair of the Theory of Probability and Mathematical Statistics YSU, Armenia

Let $P(L(\omega) \subset D)$ is the probability that a random segment of length l in \mathbb{R}^n having a common point with body D entirely lies in D. In the paper, using a relationship between $P(L(\omega) \subset D)$ and covariogram of D, the explicit form of $P(L(\alpha) \subset D)$ for arbitrary triangle on the plane is obtained.

MSC2010: Primary 60D05; Secondary 52A22, 53C65.

Keywords: covariogram, kinematic measure, orientation-dependent chord length distribution, convex body, triangle.

Introduction. Let \mathbb{R}^n ($n \geq 2$) be the n-dimensional Euclidean space, $D \subset \mathbb{R}^n$ be a bounded convex body with inner points, and V_n be the n-dimensional Lebesgue measure in \mathbb{R}^n.

Consider the set of the segments of a constant length that are contained in D. The measure evaluation problem of such segment sets no simple solution and depends on the shape of D. It is known the explicit form for the kinematic measures of the disk, the rectangle, if the length of the segment is less than the smaller side of the rectangle (see [1, 2]), the equilateral triangle, the rectangle and the regular pentagon (for an arbitrary length of the segment) [3].

Definition 1. (see [2]). The function

$$C(D, h) = V_n(D \cap (D + h)), \quad h \in \mathbb{R}^n,$$

is called the covariogram of the body D. Here $D + h = \{x + h, x \in D\}$.

Let S^{n-1} denote the $(n - 1)$-dimensional unit sphere in \mathbb{R}^n centered at the origin. We consider a random line, which is parallel to $u \in S^{n-1}$ and intersects D, that is, an element from the set:

$$\Omega_1(u) = \{\text{lines, which are parallel to } u \text{ and intersect } D\}.$$

Let $\Pi_{u_\perp}D$ be the orthogonal projection of D onto the hyperplane u_\perp (here u_\perp stands for the hyperplane with normal u and passing through the origin).

* E-mail: narine78@ysu.am ∗∗ E-mail: harutyunyan.hripsime@ysu.am
A random line, which is parallel to \(\mathbf{u} \) and intersects \(\mathbf{D} \), has an intersection point (denoted by \(x \)) with \(\Pi_{\mathbf{r}_u} \mathbf{D} \). We can identify the points of \(\Pi_{\mathbf{r}_u} \mathbf{D} \) and the lines, which intersect \(\mathbf{D} \) and are parallel to \(\mathbf{u} \), meaning that we can identify the sets \(\Omega_1(\mathbf{u}) \) and \(\Pi_{\mathbf{r}_u} \mathbf{D} \). Assuming that the intersection point \(x \) is uniformly distributed over the convex body \(\Pi_{\mathbf{r}_u} \mathbf{D} \), we can define the following distribution function.

Definition 2. The function

\[
F(\mathbf{u},t) = \frac{V_{n-1}\{x \in \Pi_{\mathbf{r}_u} \mathbf{D} : V_1(\mathbf{g}(\mathbf{u},x) \cap \mathbf{D}) < t\}}{b_D(\mathbf{u})}
\]

is called orientation-dependent chord length distribution function of \(\mathbf{D} \) in direction \(\mathbf{u} \) at a point \(t \in \mathbb{R}^1 \), where \(\mathbf{g}(\mathbf{u},x) \) is the line, which is parallel to \(\mathbf{u} \) and intersects \(\Pi_{\mathbf{r}_u} \mathbf{D} \) at the point \(x \) and \(b_D(\mathbf{u}) = V_{n-1}(\Pi_{\mathbf{r}_u} \mathbf{D}) \).

Observe that each vector \(\mathbf{h} \in \mathbb{R}^n \) can be represented in the form \(\mathbf{h} = (\mathbf{u},t) \), where \(\mathbf{u} \) is the direction of \(\mathbf{h} \), and \(t \) is the length of \(\mathbf{h} \).

Let \(L(\omega) \) be a random segment of length \(l > 0 \), which is parallel to a given fixed direction \(\mathbf{u} \in S^{n-1} \) and intersects \(\mathbf{D} \). Consider the random variable \(|L(\omega)| := V_1(L(\omega) \cap \mathbf{D}) \), where \(L(\omega) \in \Omega_2(\mathbf{u}) \), and the set \(\Omega_2(\mathbf{u}) \) is defined as follows:

\[
\Omega_2(\mathbf{u}) = \{ \text{segments of lengths } l, \text{ which are parallel to } \mathbf{u} \text{ and intersect } \mathbf{D} \}.
\]

Observe that each random segment \(L(\omega) \) lying on a line \(\mathbf{g}(\mathbf{u},x) \) can be specified by the coordinates \((\mathbf{g}(\mathbf{u},x),y) \), where \(y \) is the one-dimensional coordinate of the center of \(L(\omega) \) on the line \(\mathbf{g}(\mathbf{u},x) \). As the origin on the line \(\mathbf{g}(\mathbf{u},x) \) we take one of the intersection points of the line \(\mathbf{g}(\mathbf{u},x) \) with the boundary of domain \(\mathbf{D} \). Using the above notation, we can identify \(\Omega_2(\mathbf{u}) \) with the following set:

\[
\Omega_2(\mathbf{u}) = \left\{ (x,y) : x \in \Pi_{\mathbf{r}_u} \mathbf{D}, \quad y \in \left[-\frac{l}{2}, \chi(u,x) + \frac{l}{2} \right] \right\},
\]

where \(\chi(u,x) = V_1(\mathbf{g}(\mathbf{u},x) \cap \mathbf{D}) \). Note that the set \(\Omega_2(\mathbf{u}) \) does not depend on the choice of the origin of the line \(\mathbf{g}(\mathbf{u},x) \), and the choice of the positive direction follows from the explicit form of the range of \(y \). Further, we set

\[
B^{\mathbf{u}}_D = \left\{ (x,y) \in \Omega_2(\mathbf{u}) : |L(\mathbf{x},y)| < t \right\}, \quad t \in \mathbb{R}^1,
\]

and observe that the sets \(\Omega_2(\mathbf{u}) \) and \(B^{\mathbf{u}}_D \) are measurable subsets of \(\mathbb{R}^n \).

Definition 3. The function

\[
F_{L}(\mathbf{u},t) = \frac{V_n(B^{\mathbf{u}}_D)}{V_n(\Omega_2(\mathbf{u}))} = \frac{1}{V_n(\Omega_2(\mathbf{u}))} \int_{B^{\mathbf{u}}_D} dx dy
\]

is called orientation-dependent distribution function of the length of a random segment \(L \) in direction \(\mathbf{u} \in S^{n-1} \).

Let \(G_n \) be the space of all lines \(g \in \mathbb{R}^n \). A line \(g \in G_n \) can be specified by its direction \(\mathbf{u} \in S^{n-1} \) and its intersection point \(x \) in the hyperplane \(\mathbf{u} \perp \). The density \(d\mathbf{u} \) is the volume element of the unit sphere \(S^{n-1} \), and \(dx \) is the volume element on \(\mathbf{u} \perp \) at \(x \). Let \(\mu(\cdot) \) be a locally finite measure on \(G_n \), invariant under the group of Euclidian motions. It is well known that the element of \(\mu(\cdot) \) up to a constant factor has the following form (see [1]):

\[
\mu(\mathbf{d}g) = dg = d\mathbf{u} dx.
\]
Denote by \(O_{n-1} = \sigma_{n-1} \left(S^{n-1}\right) \) the surface area of the unit sphere in \(\mathbb{R}^n \). For each bounded convex body \(D \), we denote the set of lines that intersect \(D \) by

\[[D] = \{g \in G_n, g \cap D \neq \emptyset\}. \]

We have (see [1])

\[\mu([D]) = \frac{O_{n-2}V_{n-1}(\partial D)}{2(n-1)}. \]

A random line in \([D] \) is the one with distribution proportional to the restriction of \(\mu \) to \([D] \). Therefore, for any \(t \in \mathbb{R}^1 \) we have

\[F(t) = \frac{\mu(\{g \in [D], V_1(g \cap D) < t\})}{\mu([D])}, \]

which is called the chord length distribution function of \(D \). Let \(L \) be a random segment of length \(l \) in \(\mathbb{R}^n \) and let \(K(\cdot) \) be the kinematic measure of \(L \) [1]. If \(g \in G_n \) is the line containing \(L \) and \(y \) is the one-dimensional coordinate of the center of \(L \) on the line \(g \), then the element of the kinematic measure up to a constant factor is given by

\[dK = dg dy dK_1, \]

where \(dy \) is the one-dimensional Lebesgue measure on \(g \) and \(dK_1 \) is a motion element in \(\mathbb{R}^n \) that leaves \(g \) unchanged (see [1, 4–7]).

Note that in the case, where the segment is orientated, the constant factor is equal to 1, while for the unoriented segment it is equal to 1/2. In this paper we consider only the case of unoriented segments. The length \(|L| \) of a random segment \(L \), provided that it hits the body \(D \), has the following distribution function:

\[F_{|L|}(t) = \frac{K(L : L \cap D \neq \emptyset, V_1(L \cap D) < t)}{K(L : L \cap D \neq \emptyset)}, \quad t \in \mathbb{R}^1. \]

Denote by \(P(L(\omega) \subset D) \) probability, that random segment of length \(l \) in \(\mathbb{R}^n \) having a common point with body \(D \) entirely lying in body \(D \) (in this case the direction of the segment \(L(\omega) \) is arbitrary).

Proposition (see [7]). Probability \(P(L(\omega) \subset D) \) in terms of chord length distribution function \(F(t) \) has the following form:

\[P(L(\omega) \subset D) = \frac{O_{n-2}V_{n-1}(\partial D) \int_0^l F(z)dz - l}{(n-1)O_{n-1}V_n(D) + lO_{n-2}V_{n-1}(\partial D)}. \]

Case of a Triangle. For any body \(D \) of the \(\mathbb{R}^n \) we have (see [7])

\[P(L(\omega) \subset D) = \frac{1}{O_{n-1}} \int_{S^{n-1}} \frac{C(D, u, l)}{V_n(D) + l \cdot b_D(u)} du, \]

while the kinematic measure of the segments entire lying in \(D \) is calculated by the following formula:

\[K(L(\omega) \subset D) = \int_{S^{n-1}} C(D, u, l) du. \]

For any planar bounded convex domain we have

\[P(L(\omega) \subset D) = \frac{1}{\pi S(D) + l|\partial D|} \int_0^\pi C(D, u, l) du. \quad (1) \]
Denote by Δ a triangle in the plane. The main result of the present paper is the following statement.

Theorem. Probability $P(L(\omega) \subset \Delta)$ for arbitrary triangle has the explicit forms (2)–(8) depending on the value of l.

Proof. Without loss of the generality we assume, that $AB \equiv a$ is the longest side of $\triangle ABC$, $\angle CAB \equiv \alpha$ is the smallest angle, and $\angle ABC \equiv \beta$. Thus, we have $BC = \frac{a \sin \alpha}{\sin(\alpha + \beta)}$, $CA = \frac{a \sin \beta}{\sin(\alpha + \beta)}$, $\angle BCA = \pi - (\alpha + \beta)$. Since AB is the longest side, then $\angle BCA$ is the biggest angle. Therefore $\alpha \leq \beta \leq \pi - (\alpha + \beta)$.

Covariogram of a triangle Δ with side a has the form (see [3]):

$$C(\Delta, u, l) = \begin{cases}
\frac{(a \sin \beta - t \sin(u + \beta))^2 \sin \alpha}{2 \sin \beta \sin(\alpha + \beta)}, & u \in [0, \alpha], t \in [0, \frac{a \sin \beta}{\sin(u + \beta)}], \\
\frac{(a \sin \alpha - t \sin(u - \alpha))^2 \sin \beta}{2 \sin \alpha \sin(\alpha + \beta)}, & u \in [\alpha, \pi - \alpha], t \in [0, \frac{a \sin \alpha}{\sin(u - \alpha)}], \\
\frac{(a \sin \alpha + t \sin(u + \beta))^2 \sin \alpha}{2 \sin \alpha \sin(\alpha + \beta)}, & u \in [0, \frac{a \sin \alpha}{\sin(u + \beta)}], t \in [0, \frac{a \sin \alpha \sin \beta}{\sin(\alpha + \beta) \sin u}], \\
\frac{(a \sin \alpha + t \sin(u - \alpha))^2 \sin \beta}{2 \sin \alpha \sin(\alpha + \beta)}, & u \in [\pi + \alpha, 2\pi - \alpha], t \in [0, \frac{a \sin \alpha}{\sin(u - \alpha)}].
\end{cases}$$

Let consider the following cases

a) $0 \leq l \leq \frac{a \sin \alpha \sin \beta}{\sin(\alpha + \beta)}$.

Using (1), we get

$$P(L(\omega) \subset \Delta) = \frac{1}{\pi S(\Delta) + l |\partial \Delta|} \int_0^\pi C(\Delta, u, l) \, du =$$

$$= \frac{2 \sin(\alpha + \beta)}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))} \times$$

$$\times \left(\int_0^\alpha \frac{(a \sin \beta - l \sin(u + \beta))^2 \sin \alpha}{2 \sin \beta \sin(\alpha + \beta)} \, du + \right.$$}

$$+ \int_\frac{\pi - \beta}{2} \frac{(a \sin \alpha \sin \beta - l \sin u \sin(\alpha + \beta))^2}{2 \sin \alpha \sin \beta \sin(\alpha + \beta)} \, du + \left. \int_{\frac{\pi - \beta}{2}}^\alpha \frac{(a \sin \alpha - l \sin(u - \alpha))^2 \sin \beta}{2 \sin \alpha \sin(\alpha + \beta)} \, du \right).$$
We set
\[f_1(x, y) = \frac{\sin \alpha}{\sin \beta} \int_x^y (a \sin \beta - l \sin(u + \beta))^2 du = a^2 \sin \alpha \sin \beta (y - x) - \]
\[-4al \sin \alpha \sin \left(\frac{y + x}{2} + \beta \right) \sin \left(\frac{y - x}{2} \right) + \frac{l^2 \sin \alpha}{2 \sin \beta} ((y - x) - \sin(y - x) \cos(y + x + 2\beta)), \]
\[f_2(x, y) = \frac{1}{\sin \alpha \sin \beta} \int_x^y (a \sin \alpha \sin \beta - l \sin u \sin(\alpha + \beta))^2 du = a^2 \sin \alpha \sin \beta (y - x) - \]
\[4al \sin(\alpha + \beta) \sin \left(\frac{y + x}{2} \right) \sin \left(\frac{y - x}{2} \right) + \frac{l^2 \sin^2(\alpha + \beta)}{2 \sin \alpha \sin \beta} ((y - x) - \sin(y - x) \cos(y + x)), \]
\[f_3(x, y) = \frac{\sin \beta}{\sin \alpha} \int_x^y (a \sin \alpha - l \sin(u - \alpha))^2 du = a^2 \sin \alpha \sin \beta (y - x) - \]
\[-4al \sin \beta \sin \left(\frac{y + x - \alpha}{2} \right) \sin \left(\frac{y - x}{2} \right) + \frac{l^2 \sin \beta}{2 \sin \alpha} ((y - x) - \sin(y - x) \cos(y + x - 2\alpha)). \]

Hence, for \(0 \leq l \leq \frac{a \sin \alpha \sin \beta}{\sin(\alpha + \beta)} \) we get
\[
P(L(\omega) \subset \Delta) = \frac{f_1(0, \alpha) + f_2(\alpha, \pi - \beta) + f_3(\pi - \beta, \pi)}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))}. \tag{2} \]

b) \(\frac{a \sin \alpha \sin \beta}{\sin(\alpha + \beta)} \leq l \leq a \sin \alpha. \) We have
\[
P(L(\omega) \subset \Delta) = \frac{f_1(0, \alpha) + f_2(\alpha, \alpha + \varphi_1) + f_2(\pi - \beta - \varphi_1, \pi - \beta) + f_3(\pi - \beta, \pi)}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))}, \tag{3} \]
where \(\varphi_1 = \arcsin \frac{a \sin \alpha \sin \beta}{l \sin(\alpha + \beta)} - \alpha, \) \(\varphi_1 = \arcsin \frac{a \sin \alpha \sin \beta}{l \sin(\alpha + \beta)} - \beta. \)

c) \(a \sin \alpha \leq l \leq \min \left\{ \frac{a \sin \alpha}{\sin(\alpha + \beta)}, \frac{a \sin \beta}{\sin(\alpha + \beta)} \right\}, \) for which we have
\[
P(L(\omega) \subset \Delta) = \frac{1}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))} \times \]
\[(f_1(0, \alpha) + f_2(\alpha, \alpha + \varphi_1) + f_2(\pi - \beta - \varphi_1, \pi - \beta) + f_3(\pi - \beta, \pi)) \]
\[+ f_2(\pi - \beta - \varphi_1, \pi - \beta) + f_3(\pi - \beta, \pi + \varphi_2) + f_3(\pi - \varphi_2, \pi)), \]
where \(\varphi_2 = \alpha + \beta - \pi + \arcsin \frac{a \sin \alpha}{l}, \varphi_2 = \arcsin \frac{a \sin \alpha}{l} - \alpha : \]

c1) if \(\sin \beta \leq \frac{a \sin \alpha}{\sin(\alpha + \beta)} \), we consider \(a \sin \beta \leq l \leq \frac{a \sin \alpha}{\sin(\alpha + \beta)}, \) so
\[P(L(\omega) \subset \Delta) = \frac{1}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))} \times \]
\[\times (f_1(0, \phi_3) + f_1(\alpha - \phi_3, \alpha) + f_2(\alpha, \alpha + \varphi_1) + f_2(\pi - \beta - \phi_1, \pi - \beta) + \]
\[+ f_3(\pi - \beta, \pi - \beta + \varphi_2) + f_3(\pi - \phi_2, \pi)), \]
\[\text{where } \phi_3 = \arcsin \frac{a \sin \beta}{l} - \beta, \phi_3 = \alpha + \beta - \pi + \arcsin \frac{a \sin \beta}{l}; \]
\[\text{c2) if } \frac{\sin \alpha}{\sin(\alpha + \beta)} \leq \sin \beta, \text{ we consider } \frac{a \sin \alpha}{\sin(\alpha + \beta)} \leq l \leq a \sin \beta, \text{ then} \]
\[P(L(\omega) \subset \Delta) = \frac{f_1(0, \alpha) + f_2(\alpha, \alpha + \varphi_1) + f_3(\pi - \phi_2, \pi)}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))}. \]
\[\text{d) max } \left\{ \frac{a \sin \alpha}{\sin(\alpha + \beta)}, \frac{a \sin \beta}{l} \right\} \leq l \leq \frac{a \sin \beta}{\sin(\alpha + \beta)}, \]
\[P(L(\omega) \subset \Delta) = \frac{f_1(0, \varphi_3) + f_1(\alpha - \phi_3, \alpha) + f_2(\alpha, \alpha + \varphi_1) + f_3(\pi - \phi_2, \pi)}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))}. \]
\[\text{e) } \frac{a \sin \beta}{\sin(\alpha + \beta)} \leq l \leq a \text{ we have} \]
\[P(L(\omega) \subset \Delta) = \frac{f_1(0, \varphi_3) + f_3(\pi - \phi_2, \pi)}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))}. \]

Obviously, if \(l > a \), the probability \(P(L(\omega) \subset \Delta) \) is zero. \(\square \)

Particularly, for regular triangle with a side \(a \) and \(\alpha = \beta = 60^\circ \), among all 5 subcases a)–e) there are only two cases, namely
\[0 \leq l \leq \sin \alpha \quad \text{and} \quad \sin \alpha \leq l \leq a \]
and result of Theorem coincides with the result of [7] (Eqs. (4.3), (4.4)) for a regular triangle.

Received 14.07.2017

REFERENCES