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ON SOLVABILITY OF A NONLINEAR DISCRETE SYSTEM
IN THE SPREAD THEORY OF INFECTION
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In this paper a special class of infinite nonlinear system of algebraic
equations with Teoplitz matrix is studied. The mentioned system arises in
the mathematical theory of the spatial temporal spread of the epidemic. The
existence and the uniqueness of the solution in the space of bounded sequences
are proved. It is studied also the asymptotic behavior of the constructed solution
at infinity. At the end of the work specific examples are given.
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Introduction and Statement of the Problem. In this paper we study the
following infinite nonlinear algebraic system of equations

Xp = Z an—jg(xj), nez, (1)
J—
with respect to the unknown infinite vector x = (... ,x,l,xo,xl,...)T (T denotes
the transposition), where the conditions on the sequence {a, }_, and the function g
are listed below.
We assume that infinite matrix A = (a,—;)
conditions

satisfies the following

oo
n,j=—oo

an>0, VYneZ, Y ay=1, )

n——oo
Y Inlay <+, v(A)= Y na,>0, (3)
Nn——oo Nn—-—oo
and the function g satisfies:

a) the function g(u) is determined on the R, is increasing on the interval [0, 1]
and g € C[0,n];
b) the function g(u) is strictly-convex up on the interval [0,17] and g(0)=0, g(1)="n;
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c) there exist € > 0 and ¢ > 0 such that g(u) > g'(0)u—éu'*¢, u € [0,1];
d) g'(0) is defined, 1 < g’(0) < 4o, and there is a number 1 > 0 such that

8(u) <g'(O)u, uel0,n].

The system (1) arises in the discrete diffusion model for the geographical spread
of epidemics, as well as in the age-structured non-local delayed reaction-diffusion
theory (see [1-5]).

In the case a_, = a,, this system (and its two-dimensional analogue) is well
studied in the work [60], where alternating and bounded solutions are constructed under
some restrictions on nonlinearity. In the present paper, under essentially different
restrictions on the nonlinearity of g and on the matrix A, existence and uniqueness
theorems of a positive and bounded solution are described. The asymptotic behaviour
of the constructed solution at oo is described. At the end of the paper specific
examples of nonlinear g are given.

Auxiliary Facts. Consider the following discrete analogue of the Diekmann
function (see [1])

=g 0) Y ajg*, g>1, A€[0,+). 4)
j:—oo
Hereinafter, we will assume the convergence of the series (4) and its termwise differ-
entiability.

Observe that L(0 Z aj = ) > 1. Under condition (3) we have
]_—OO
dL )L) / - —Aj
— =—g(0 jq "1 <0 5
7 )H) g )j:Z_‘,wa]Jq ng|, <0, (5)
. . dL(A) .
and due to the continuity of the function n there exists a number A9 > 0
such that JLA
d(l ) <0 forany A €][0,A).
From (5) it follows that
d’L(1)
dk(z = Z ajj*q "7 - (Ing)* >0 (it can also be + o).
j——oo
Therefore, the function L(A) is convex. We assume that

L(%) < 1. ©)
Hence, according to the Boltzano—Cauchy theorem, there exists a unique number
0y € (0,p) such that
L(op) = 1. 7
From the properties of the function L(A) it follows that
Lioy+8) < 1 ®)
for each 0 € (0,49 — 0p). Consider the following sequence
L, = max{nq®" — Mg!¥+oon .0}, neZzZ, 9
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n
M’

1
where M > 1, 6 € (0,4 — 0p) are parameters. Notice that £,, =0, if n > glogq
n € Z. It is easy to verify that for any § € (0, min{Ay — 0y, 6p€}) the inequality

L, <n'teqOr O nez, (10)
holds.
Solvability of System (1). Consider the following iteration for system (1):
p+1 Zan ig(x 517 ), n€Z, p=0,1,2,...,
]_700
11
0) ng®", necZ\7Z", (1)
Xn —
n, nel,
where Z* :={0,1,2,...}.
First of all observe that
() J with respectto p, né€Z, (12)
P'>0, nez, p=01,2,... (13)

Let n € Z™". Then, taking into account the monotonicity of the function g, as well as
conditions b), (2) and (3), from (11) we obtain

V< ¥ amgm=n=x", nez’.
j:—oo
Now let n € Z\ Z". Then, taking into account conditions (2), (3), a) —d), from (11)
we get

<nq60nL G()n Z aiq 1(70+n Z a;

i=—o0 [=—o00

n—1 n—1
<ng™-n Y ag®+n Y a<ng™ =x.
Hence, xﬁll) < x,(qo) for n € Z\ Z". It is obvious that x,(ql) >0, n € Z. Assuming that
xﬁ,p) < x,(,pfl), n € 7, and xﬁlp) >0, n € Z, for some natural p, in light of (2) and the
monotonicity of function g, from (11) we obtain
W< Y an gy =4,

Jj=—o0
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x,SpH) > Z an—;g(0) =0.

j:—oo

Thus statements (12) and (13) are proved.
Let us rewrite the successive approximation formula (11) in the form

P‘H Z alg 1 7 I’IGZ, P:071727
|=—o0
(0) nge", ne€Z\Z", (14
Xn =
n, nerzt.

Using the monotonicity of the zero approximation, on can easily check by induction
that

P) 4 withrespectton, neZ, p=0,1,2,... (15)

= 1+8L S
WeclaimthatforM>max{n’ /cn (6+00)

8 (0)(1—L(00_|-5)) } and & € (07min {%_00,608})

it holds the inequality
P>, nez, p=0,1,2,... (16)

We will prove it by induction with respect to p.

The inequality (16) for p = 0 follows from the definition of the zero approxi-
mation. Assume that (16) is fulfilled for some natural p. Then, in view of conditions
a)—d), (2), (3) and (10), from (11) we obtain

oo

(p+l> > Z ay,— ]g L ) g'(O) Z an,jﬂj—f Z an,jﬁi-l_'_g)

_ nqaong/(o) Z alq Mq(cro+6 n / Z amng- (op+0)i _¢ Z ay J H—s

j=—o0 j=—o00 ]_—oc

>nq®"L(op) — Mq(60+8)"L(Go +6)-¢ Z an,jLEHE)

j——oo

2 nqﬁon Mq(00+5)nL(o.O+ 5) n 1+8 Z an— Jq(00+6)

]_—oo

(1+s)

L(cy+ &S (co+6)n

_ nqcron Mq(60+5)nL( + 5)
> nqﬁon _Mq(G()—"a)n'
Thus it follows from (12), (13), and (16) that the sequence of vectors {x(” } A

(where x(P) = (... ,x@l),x(()p),xgp),...)T) has a limit as p — +co. Namely,

lim x?) = x. (17)

p—oo



ON SOLVABILITY OF A NONLINEAR TDISCRETE SYSTEM IN THE SPREAD THEORY ... 91

So the limit vector x = (..., x_1,X0,X1,... )T satisfies the initial system of (1), and the
coordinates of the limit vectors satisfy

Lo <x,<x¥ nez. (18)

From (15) it follows that the coordinates x,, n € Z, of the limit vectors x are
increasing with respect to n € Z. Observe that

lim x, =0. (19)

n——oo
Indeed, last statement immediately follows from the inequalities

o — Mg @+ < . < g p < r..n

alogqﬁ, necZ.

We will prove below that
lim x, =17. (20)

n—y—+oo
Since x,, 1, n € Z, from (18) it immediately follows that 0 < A := lirJrrl xp < 1.
n— oo

Taking the limit of both sides of (1) as n — oo, from conditions a) —d) and
the limit property of the convolution type discrete operators we get

A =g(2), A€ (0.m].
However the last is possible only when A = 1.
Now we prove that the constructed solution x has the following additional

properties
h—x el

where h=(...,n,7n,...)T and x = (...,x_1,x0,x1,...)T; so we will prove that

oo

Y (N —x) < +eo. 1)

n=0
Since lim x,, =1 and x,, T, n € Z, there exists a number ng € N, such that for n > ng
n—soo

no—1

we have x, > g Fix a number ny. Obviously, Z (N — x,) is finite. So we can
n=0
consider the following quantity
N
Y (n—x), (22)
n=ny

where N > ny is an arbitrary number. In light of (1)—(3), a) — d), from (22) we have

N N 0 N =
Z (M —x) = Z <TI— Z anjg(xj)> = Z Z (n —g(x;)) an—;

n=n n=n Jj=—o0 n=ng j=—oo
N
<ZTI ZanﬂrZZn 8(x;))an—;
n=ng j=-—oo n=ng j=

—nZZaﬁZZn 8(x;))an-j

n=ngi=n n=ng j=
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<n21a,—|—zz1’] g(xj) an/+z Z n —g(x;))an—;

n=ng j= n=ngy j=n-+1
<ot XY -sl)ans+ Y (1-gl) Y an
n=ngp j=1 n=ny j=n+1
<c1+ZZn g(x;))an— ]—i-z N —g(xn)) Z n—j
n=ng j=1 n=ng j=n+1
no—1
—C1+Zn 8(xn) Za,+2 Zn g(x;))an— ,+Z Zn 8(x;))an—;
n=n [=—o0 n=ny j n—. l’l()J no
o np— 1 —1
<c1+nZ Zan ]—I—Z n—g(xn)) Za,—i—Z Z n-— gx] Yan—j
n=ng j= n=ngp I=—o00 n=ng j=ngy
—1
:c1+cz+2(n—g(xn ) al—i-z n—g(x;) Zan j
n=ny =—00 Jj=no
_C+Zn g(xn)) Zaz"i'zn ng Zal
n=ng [=—o0 J=no
N
<c+ Y (n—glxw),
n=n
where
oo o np— 1
clzznZiai<—|—oo, 2—112 Zanj<—|—oo c=ci+cp.
i=0 n=ngy j=
From this it follows that
N
Y (elo) —x) <c. (23)
n=ny

Now we consider the line passing through the points (x,,,g(x,,)) and (1,1)

y= n _g(xno)u+ng(xn0) — Xng '
n - xl’l() n - xno
Since x,, < x, < 1 for n > ng, then by the convexity of the function g we get
o(e) > T=8Um) o 80m) = g (24)
- xn() n - xn()

From the last inequality it follows that
n_g<xn0> g( no)_xno g('xno)_xno
—x, > — oV Sl M (pn — A PN I
8(Xn) — Xn > Xn < 1 — g +n 1 — g (N —xn) 1 — g
Since g(u) > u on (0,1), then

g():]”");x’“’ > 0. (25)
o
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Taking into account (23) and (25), we come to the following inequalities

X, —X N al
800) = $ (1) < ¥ () —) <

N — Xny n=ng n=ny

Now, taking the limit of both sides of this inequality as N — +oo, we obtain

oo

Z (N —xp) < oo.

n=ny

So the following theorem holds.

Theorem 1. Let conditions (2), (3), a) —d) and (6) are satisfied. Then the
system (1) has a bounded, nonnegative, nontrivial solution x = (..., x_1,X0,X1,...)",
such that

e x, T on neZ;

e lim x, =0, lim x,=m;

n——oo n—y—+oo
. Z(n —Xp) < Hoo.
n=0

Uniqueness of Solution. We prove uniqueness of the solution in the following
class:

0
M= {x= (..., x_1,x0,X1,...) ¢ Lp<x, §x§, ), ne€Zl}.
Assume to the contrary that system (1) has two different solutions
T s = = T
X=(eou,X1,X0,X15-0+) , X=(...,%_1,%0,%1,...)" € M.

Then it is easy to see that the sequence

q*((’°+5)”|x,, — X, neZz,
is bounded. |
Since £, =0 when n > < log, % n € Z, by virtue of the definition of x\) for
1
n> glogq%, n € Z, it holds

1+
M 3
g, — | < 2mg(FO < <n> .
1 n . .
Now let n < 5 log, Vil € Z. Then due to x, X € 91, we obtain

_Mq(60+5)n S Xn _x~n S Mq(60+5)n

or
q7(60+5)n’xn _in| <M.

Thus

o :=supg O x, — %, < +oo.

nez
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Since the function g is convex on [0, 1], we obtain

|g(xn) — 8(%n)| < &'(0)pn —Tul, nEZ (26)
Taking into account (26), from (1) we get

b=l < Y anjlg () — (| < &(0) Y an- il —ilq (@ g 0+

J=—0 J=—0°

<g0)a Y, an g =g (0)ag' @t Y ag (@O

J=—00 |=—o0
from which it follows that
g O, — % | < aL(cy+8), neZ. 27)

From (27) we conclude that
o < oL(6 + 0p). (28)

From (8) we have that L(8 + 0p) < 1 if 6 € (0,min{Ay — 0p, 0p€}), and then from
(28) it follows that &« = 0. Therefore x, =%,, n€ Z = x=X.
Thus the following theorem holds.

Theorem 2. Under the conditions of Theorem 1, system (1) has a unique
solution in .

Let us list some examples of nonlinear function g :
D gw)=y(l—e™), y>1, u=0;
mg(u) =yu—ur®), u>0, y>1, £>0.
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U. \. WdBShUBUL

Ub N2 4-0U3hL 1hUUNES SUUTHUNab LAFSELPNAFE-8AFLL
NUUUSUCUYh SUMUOCUUL SEUNFE-8UL UBR

SYjuy wohnwpuwipmy htipugnpymud £ Sjnyyihgyud dungpphgny hwgpniy
nwuh ns qdwyhtt mbytpe hwbpwhwyyuwliuwt hwjuwuwpmdttph hwdwung: -
qnuwnpyynn hwdwupgp dwgnud £ hwdwdwpuyh pupudwudwudiwbwluyhll -
pwdlwlh dwptdunphuiub phunpjubd dbe: Uyugngymd th vwhdwbwthwly
hwonpnuwjubtinipymbbbph puund Mdvwh gnynipjub b thulnipyub pinptdbbp:
Ntypugnpynid £ owle unnigynn nmiddwd wuhduppnphy Juppl wigbponipyni-
Onwi: Wohuwypubiph Ytipenud ptipgnud G jhpwowlwd tpwbwynipinid nibtignn
ophtwuybtin:

M. O. ABETUCAH

O PABPEHIMMOCTU OJHON HEJMHENHON JUCKPETHON
CHUCTEMBI B TEOPUU PACITPOCTPAHEHUS SIINJIEMNI

B manHoit pabore ucciemnyercs CHEIUAJbHBI KJIacC CUCTEMbI HeJMHEel-
HBIX OECKOHEUHBIX aJIreOpamvdecKux ypaBHEHUI ¢ Marpunamu Termaumna. YKa-
3aHHAsl CUCTEMa BO3HUKAET B MATEMATHYECKON TEOPHUH ITPOCTPAHCTBEHHO-
BPEMEHHOI'O pacipocTpanenus suujgeMun. JI0Ka3bIBalOTCs TEOPEMBbI CYIIIECTBO-
BAHUS U €IMHCTBEHHOCTH PEINIEHUs B IIPOCTPAHCTBE OI'PAHUYEHHBIX TIOCIIE0BA~
TenbHOCTel. Uccmemyercs Tak»Ke aCUMITOTUYECKOE MOBEJIEHUE TTOCTPOCHHBIX
periernii B OeCKOHEYHOCTU. B KOHIE TPUBOIATCS CHEIUAJIbHBIE TTPUKJIAIHBIE
IIPUMEPHI.
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