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The quasigroup Q(◦) is called a Belousov quasigroup,if the identities

x ◦ (x ◦ y) = y ◦ x,

(x ◦ y) ◦ y = x,

x ◦ (y ◦ x) = (y ◦ x) ◦ y

are valid. A non-trivial Belousov quasigroup is not a Stein quasigroup
and not commutative.

The set O
(2)
p Q of all binary operations on the set Q is a monoid under

the following operations:

f · g(x, y) = f(x, g(x, y)), (1)

f ◦ g(x, y) = f(g(x, y), y). (2)

Theorem 1. If Q(A) is a non-trivial Belousov quasigroup, then it is
idempotent and A · A = A∗, A · A∗ = A ◦ A∗, A ◦ A = δ1

2, A∗ · A∗ =
δ2
2 , A∗ ◦ A∗ = A . So if Q(A) is a non-trivial Belousov quasigroup, then

the set {δ1
2 , δ2

2 , A, A∗, A · A∗ = A ◦ A∗} is a bigroup of operations (on the
set Q), where A∗(x, y) = A(y, x) for every x, y ∈ Q.

Theorem 2. In every Belousov quasigroup Q(◦) the identities (x ◦ y) ◦
(y ◦ x) = y, (x ◦ y) ◦ (x ◦ (y ◦ x)) = y ◦ x, (y ◦ x) ◦ (x ◦ (y ◦ x)) = x ◦ y are
valid. In a non-trivial Belousov quasigroup Q(◦), for any a 6= b in Q the
set {a, b, a ◦ b, b ◦ a, a ◦ (b ◦ a)} is a five-element subquasigroup, which is
isomorphic to the five-element quasigroup with the following multiplication
table:

0 1 2 3 4
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4
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If we take such subquasigroups as blocks, we obtain a block design on
the set Q.

It follows from the Theorem 2 that the non-trivial Belousov quasi-
group has at least five elements. The variety of Belousov quasigroups
is called a Belousov variety,which is a subvariety of the Mikado variety
([1]). Hence, the Belousov variety has a solvable word problem and is
congruence-permutable. Every Belousov quasigroup of prime order is a
simple algebra.

The applications of similar quasigroups in cellular automata see in [2].
To solution of the following problem is open.
To which loops are Belousov quasigroups isotopic?
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